拓扑缺陷宇宙时空中相对论量子振荡器场的彩虹引力效应

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Few-Body Systems Pub Date : 2024-11-17 DOI:10.1007/s00601-024-01966-6
Faizuddin Ahmed, Abdelmalek Bouzenada
{"title":"拓扑缺陷宇宙时空中相对论量子振荡器场的彩虹引力效应","authors":"Faizuddin Ahmed,&nbsp;Abdelmalek Bouzenada","doi":"10.1007/s00601-024-01966-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the quantum dynamics of scalar and oscillator fields in a topological defect space-time background under the influence of rainbow gravity’s. The rainbow gravity’s are introduced into the considered cosmological space-time geometry by replacing the temporal part <span>\\(dt \\rightarrow \\frac{dt}{\\mathcal {F}(\\chi )}\\)</span> and the spatial part <span>\\(dx^i \\rightarrow \\frac{dx^i}{\\mathcal {H} (\\chi )}\\)</span>, where <span>\\(\\mathcal {F}, \\mathcal {H}\\)</span> are the rainbow functions and <span>\\(0 \\le \\chi =|E|/E_p &lt;1\\)</span> is the dimensionless parameter. We derived the radial equation of the Klein–Gordon equation and its oscillator equation under rainbow gravity’s in topological space-time. To obtain eigenvalue of the quantum systems under investigations, we set the rainbow functions <span>\\(\\mathcal {F}(\\chi )=1\\)</span> and <span>\\(\\mathcal {H}(\\chi )=\\sqrt{1-\\beta \\,\\chi ^p}\\)</span>, where <span>\\(p=1,2\\)</span>. We solve the radial equations through special functions using these rainbow functions and analyze the results. In fact, it is shown that the presence of cosmological constant, the topological defect parameter <span>\\(\\alpha \\)</span>, and the rainbow parameter <span>\\(\\beta \\)</span> modified the energy spectrum of scalar and oscillator fields in comparison to the results obtained in flat space.\n</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"65 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rainbow Gravity Effects on Relativistic Quantum Oscillator Field in a Topological Defect Cosmological Space-Time\",\"authors\":\"Faizuddin Ahmed,&nbsp;Abdelmalek Bouzenada\",\"doi\":\"10.1007/s00601-024-01966-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we investigate the quantum dynamics of scalar and oscillator fields in a topological defect space-time background under the influence of rainbow gravity’s. The rainbow gravity’s are introduced into the considered cosmological space-time geometry by replacing the temporal part <span>\\\\(dt \\\\rightarrow \\\\frac{dt}{\\\\mathcal {F}(\\\\chi )}\\\\)</span> and the spatial part <span>\\\\(dx^i \\\\rightarrow \\\\frac{dx^i}{\\\\mathcal {H} (\\\\chi )}\\\\)</span>, where <span>\\\\(\\\\mathcal {F}, \\\\mathcal {H}\\\\)</span> are the rainbow functions and <span>\\\\(0 \\\\le \\\\chi =|E|/E_p &lt;1\\\\)</span> is the dimensionless parameter. We derived the radial equation of the Klein–Gordon equation and its oscillator equation under rainbow gravity’s in topological space-time. To obtain eigenvalue of the quantum systems under investigations, we set the rainbow functions <span>\\\\(\\\\mathcal {F}(\\\\chi )=1\\\\)</span> and <span>\\\\(\\\\mathcal {H}(\\\\chi )=\\\\sqrt{1-\\\\beta \\\\,\\\\chi ^p}\\\\)</span>, where <span>\\\\(p=1,2\\\\)</span>. We solve the radial equations through special functions using these rainbow functions and analyze the results. In fact, it is shown that the presence of cosmological constant, the topological defect parameter <span>\\\\(\\\\alpha \\\\)</span>, and the rainbow parameter <span>\\\\(\\\\beta \\\\)</span> modified the energy spectrum of scalar and oscillator fields in comparison to the results obtained in flat space.\\n</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":\"65 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01966-6\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01966-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在彩虹引力影响下拓扑缺陷时空背景中标量场和振子场的量子动力学。彩虹引力通过替换时间部分(dt \rightarrow \frac{dt}{\mathcal {F}(\chi )}\ )和空间部分(dx^i \rightarrow \frac{dx^i}{\mathcal {H} (\chi )}\ )被引入到所考虑的宇宙学时空几何中、其中 \(\mathcal {F}, \mathcal {H}\) 是彩虹函数,\(0 \le \chi =|E|/E_p <;1)是无量纲参数。我们推导了拓扑时空中彩虹引力作用下克莱因-戈登方程的径向方程及其振子方程。为了得到所研究量子系统的特征值,我们设置了彩虹函数\(\mathcal {F}(\chi )=1\) 和\(\mathcal {H}(\chi )=\sqrt{1-\beta\,\chi ^p}\),其中\(p=1,2\)。我们利用这些彩虹函数通过特殊函数求解径向方程,并对结果进行分析。事实上,与在平坦空间得到的结果相比,宇宙常数、拓扑缺陷参数和彩虹参数的存在改变了标量场和振子场的能谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rainbow Gravity Effects on Relativistic Quantum Oscillator Field in a Topological Defect Cosmological Space-Time

In this paper, we investigate the quantum dynamics of scalar and oscillator fields in a topological defect space-time background under the influence of rainbow gravity’s. The rainbow gravity’s are introduced into the considered cosmological space-time geometry by replacing the temporal part \(dt \rightarrow \frac{dt}{\mathcal {F}(\chi )}\) and the spatial part \(dx^i \rightarrow \frac{dx^i}{\mathcal {H} (\chi )}\), where \(\mathcal {F}, \mathcal {H}\) are the rainbow functions and \(0 \le \chi =|E|/E_p <1\) is the dimensionless parameter. We derived the radial equation of the Klein–Gordon equation and its oscillator equation under rainbow gravity’s in topological space-time. To obtain eigenvalue of the quantum systems under investigations, we set the rainbow functions \(\mathcal {F}(\chi )=1\) and \(\mathcal {H}(\chi )=\sqrt{1-\beta \,\chi ^p}\), where \(p=1,2\). We solve the radial equations through special functions using these rainbow functions and analyze the results. In fact, it is shown that the presence of cosmological constant, the topological defect parameter \(\alpha \), and the rainbow parameter \(\beta \) modified the energy spectrum of scalar and oscillator fields in comparison to the results obtained in flat space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
期刊最新文献
Bound and Resonance States of Highly Charged H- and He-like Ions Under Dense Quantum Plasma Environment Klein-Gordon Oscillator Subject to a Coulomb-type Potential in Bonnor-Melvin Universe with a Cosmological Constant Production Cross-Section of \(\gamma \)-Rays from (p,p\(^\prime \gamma \)) Reactions: Measurements and Theoretical Analysis Test of the Charge Symmetry Hypothesis of NN Interaction from the Coulomb-Free p–p Scattering Cross Section and Its Relation to Universality Isospin Symmetry of \(\omega \) Meson at Finite Temperature in the Soft-Wall Model of Holographic QCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1