LGSur-Net:用于高稀疏点云升采样的局部高斯曲面表示网络

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-11-08 DOI:10.1111/cgf.15257
Zijian Xiao, Tianchen Zhou, Li Yao
{"title":"LGSur-Net:用于高稀疏点云升采样的局部高斯曲面表示网络","authors":"Zijian Xiao,&nbsp;Tianchen Zhou,&nbsp;Li Yao","doi":"10.1111/cgf.15257","DOIUrl":null,"url":null,"abstract":"<p>We introduce LGSur-Net, an end-to-end deep learning architecture, engineered for the upsampling of sparse point clouds. LGSur-Net harnesses a trainable Gaussian local representation by positioning a series of Gaussian functions on an oriented plane, complemented by the optimization of individual covariance matrices. The integration of parametric factors allows for the encoding of the plane's rotational dynamics and Gaussian weightings into a linear transformation matrix. Then we extract the feature maps from the point cloud and its adjoining edges and learn the local Gaussian depictions to accurately model the shape's local geometry through an attention-based network. The Gaussian representation's inherent high-order continuity endows LGSur-Net with the natural ability to predict surface normals and support upsampling to any specified resolution. Comprehensive experiments validate that LGSur-Net efficiently learns from sparse data inputs, surpassing the performance of existing state-of-the-art upsampling methods. Our code is publicly available at https://github.com/Rangiant5b72/LGSur-Net.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud\",\"authors\":\"Zijian Xiao,&nbsp;Tianchen Zhou,&nbsp;Li Yao\",\"doi\":\"10.1111/cgf.15257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce LGSur-Net, an end-to-end deep learning architecture, engineered for the upsampling of sparse point clouds. LGSur-Net harnesses a trainable Gaussian local representation by positioning a series of Gaussian functions on an oriented plane, complemented by the optimization of individual covariance matrices. The integration of parametric factors allows for the encoding of the plane's rotational dynamics and Gaussian weightings into a linear transformation matrix. Then we extract the feature maps from the point cloud and its adjoining edges and learn the local Gaussian depictions to accurately model the shape's local geometry through an attention-based network. The Gaussian representation's inherent high-order continuity endows LGSur-Net with the natural ability to predict surface normals and support upsampling to any specified resolution. Comprehensive experiments validate that LGSur-Net efficiently learns from sparse data inputs, surpassing the performance of existing state-of-the-art upsampling methods. Our code is publicly available at https://github.com/Rangiant5b72/LGSur-Net.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15257\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15257","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍的 LGSur-Net 是一种端到端深度学习架构,专为稀疏点云的上采样而设计。LGSur-Net 通过在定向平面上定位一系列高斯函数,利用可训练的高斯局部表示法,并辅以对单个协方差矩阵的优化。参数因子的整合可将平面的旋转动态和高斯权重编码到线性变换矩阵中。然后,我们从点云及其相邻边缘中提取特征图,并学习局部高斯描述,通过基于注意力的网络对形状的局部几何形状进行精确建模。高斯表示法固有的高阶连续性赋予了 LGSur-Net 预测表面法线的自然能力,并支持以任何指定分辨率进行上采样。综合实验验证了 LGSur-Net 能高效地从稀疏数据输入中学习,其性能超过了现有最先进的上采样方法。我们的代码可在 https://github.com/Rangiant5b72/LGSur-Net 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud

We introduce LGSur-Net, an end-to-end deep learning architecture, engineered for the upsampling of sparse point clouds. LGSur-Net harnesses a trainable Gaussian local representation by positioning a series of Gaussian functions on an oriented plane, complemented by the optimization of individual covariance matrices. The integration of parametric factors allows for the encoding of the plane's rotational dynamics and Gaussian weightings into a linear transformation matrix. Then we extract the feature maps from the point cloud and its adjoining edges and learn the local Gaussian depictions to accurately model the shape's local geometry through an attention-based network. The Gaussian representation's inherent high-order continuity endows LGSur-Net with the natural ability to predict surface normals and support upsampling to any specified resolution. Comprehensive experiments validate that LGSur-Net efficiently learns from sparse data inputs, surpassing the performance of existing state-of-the-art upsampling methods. Our code is publicly available at https://github.com/Rangiant5b72/LGSur-Net.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting iShapEditing: Intelligent Shape Editing with Diffusion Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1