{"title":"GETr:用于点云注册的几何等差变换器","authors":"Chang Yu, Sanguo Zhang, Li-Yong Shen","doi":"10.1111/cgf.15216","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to seek the optimal transformation to align point cloud pairs. Meanwhile, the equivariance lies at the core of matching point clouds at arbitrary pose. In this paper, we propose GETr, a geometric equivariant transformer for PCR. By learning the point-wise orientations, we decouple the coordinate to the pose of the point clouds, which is the key to achieve equivariance in our framework. Then we utilize attention mechanism to learn the geometric features for superpoints matching, the proposed novel self-attention mechanism encodes the geometric information of point clouds. Finally, the coarse-to-fine manner is used to obtain high-quality correspondence for registration. Extensive experiments on both indoor and outdoor benchmarks demonstrate that our method outperforms various existing state-of-the-art methods.</p>\n </div>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15216","citationCount":"0","resultStr":"{\"title\":\"GETr: A Geometric Equivariant Transformer for Point Cloud Registration\",\"authors\":\"Chang Yu, Sanguo Zhang, Li-Yong Shen\",\"doi\":\"10.1111/cgf.15216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to seek the optimal transformation to align point cloud pairs. Meanwhile, the equivariance lies at the core of matching point clouds at arbitrary pose. In this paper, we propose GETr, a geometric equivariant transformer for PCR. By learning the point-wise orientations, we decouple the coordinate to the pose of the point clouds, which is the key to achieve equivariance in our framework. Then we utilize attention mechanism to learn the geometric features for superpoints matching, the proposed novel self-attention mechanism encodes the geometric information of point clouds. Finally, the coarse-to-fine manner is used to obtain high-quality correspondence for registration. Extensive experiments on both indoor and outdoor benchmarks demonstrate that our method outperforms various existing state-of-the-art methods.</p>\\n </div>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.15216\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15216\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15216","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
GETr: A Geometric Equivariant Transformer for Point Cloud Registration
As a fundamental problem in computer vision, 3D point cloud registration (PCR) aims to seek the optimal transformation to align point cloud pairs. Meanwhile, the equivariance lies at the core of matching point clouds at arbitrary pose. In this paper, we propose GETr, a geometric equivariant transformer for PCR. By learning the point-wise orientations, we decouple the coordinate to the pose of the point clouds, which is the key to achieve equivariance in our framework. Then we utilize attention mechanism to learn the geometric features for superpoints matching, the proposed novel self-attention mechanism encodes the geometric information of point clouds. Finally, the coarse-to-fine manner is used to obtain high-quality correspondence for registration. Extensive experiments on both indoor and outdoor benchmarks demonstrate that our method outperforms various existing state-of-the-art methods.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.