{"title":"VRTree:虚拟现实中基于实例的 3D 交互式树建模","authors":"Di Wu, Mingxin Yang, Zhihao Liu, Fangyuan Tu, Fang Liu, Zhanglin Cheng","doi":"10.1111/cgf.15254","DOIUrl":null,"url":null,"abstract":"<p>We present VRTree, an example-based interactive virtual reality (VR) system designed to efficiently create diverse 3D tree models while faithfully preserving botanical characteristics of real-world references. Our method employs a novel representation called Hierarchical Branch Lobe (HBL), which captures the hierarchical features of trees and serves as a versatile intermediary for intuitive VR interaction. The HBL representation decomposes a 3D tree into a series of concise examples, each consisting of a small set of main branches, secondary branches, and lobe-bounded twigs. The core of our system involves two key components: (1) We design an automatic algorithm to extract an initial library of HBL examples from real tree point clouds. These HBL examples can be optionally refined according to user intentions through an interactive editing process. (2) Users can interact with the extracted HBL examples to assemble new tree structures, ensuring the local features align with the target tree species. A shape-guided procedural growth algorithm then transforms these assembled HBL structures into highly realistic, finegrained 3D tree models. Extensive experiments and user studies demonstrate that VRTree outperforms current state-of-the-art approaches, offering a highly effective and easy-to-use VR tool for tree modeling.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VRTree: Example-Based 3D Interactive Tree Modeling in Virtual Reality\",\"authors\":\"Di Wu, Mingxin Yang, Zhihao Liu, Fangyuan Tu, Fang Liu, Zhanglin Cheng\",\"doi\":\"10.1111/cgf.15254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present VRTree, an example-based interactive virtual reality (VR) system designed to efficiently create diverse 3D tree models while faithfully preserving botanical characteristics of real-world references. Our method employs a novel representation called Hierarchical Branch Lobe (HBL), which captures the hierarchical features of trees and serves as a versatile intermediary for intuitive VR interaction. The HBL representation decomposes a 3D tree into a series of concise examples, each consisting of a small set of main branches, secondary branches, and lobe-bounded twigs. The core of our system involves two key components: (1) We design an automatic algorithm to extract an initial library of HBL examples from real tree point clouds. These HBL examples can be optionally refined according to user intentions through an interactive editing process. (2) Users can interact with the extracted HBL examples to assemble new tree structures, ensuring the local features align with the target tree species. A shape-guided procedural growth algorithm then transforms these assembled HBL structures into highly realistic, finegrained 3D tree models. Extensive experiments and user studies demonstrate that VRTree outperforms current state-of-the-art approaches, offering a highly effective and easy-to-use VR tool for tree modeling.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15254\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15254","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
VRTree: Example-Based 3D Interactive Tree Modeling in Virtual Reality
We present VRTree, an example-based interactive virtual reality (VR) system designed to efficiently create diverse 3D tree models while faithfully preserving botanical characteristics of real-world references. Our method employs a novel representation called Hierarchical Branch Lobe (HBL), which captures the hierarchical features of trees and serves as a versatile intermediary for intuitive VR interaction. The HBL representation decomposes a 3D tree into a series of concise examples, each consisting of a small set of main branches, secondary branches, and lobe-bounded twigs. The core of our system involves two key components: (1) We design an automatic algorithm to extract an initial library of HBL examples from real tree point clouds. These HBL examples can be optionally refined according to user intentions through an interactive editing process. (2) Users can interact with the extracted HBL examples to assemble new tree structures, ensuring the local features align with the target tree species. A shape-guided procedural growth algorithm then transforms these assembled HBL structures into highly realistic, finegrained 3D tree models. Extensive experiments and user studies demonstrate that VRTree outperforms current state-of-the-art approaches, offering a highly effective and easy-to-use VR tool for tree modeling.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.