{"title":"DiffPop:用于图像合成的似是而非引导的物体位置扩散","authors":"Jiacheng Liu, Hang Zhou, Shida Wei, Rui Ma","doi":"10.1111/cgf.15246","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address the problem of plausible object placement for the challenging task of realistic image composition. We propose DiffPop, the first framework that utilizes plausibility-guided denoising diffusion probabilistic model to learn the scale and spatial relations among multiple objects and the corresponding scene image. First, we train an unguided diffusion model to directly learn the object placement parameters in a self-supervised manner. Then, we develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images to provide the weak supervision for training a structural plausibility classifier. The classifier is further used to guide the diffusion sampling process towards generating the plausible object placement. Experimental results verify the superiority of our method for producing plausible and diverse composite images on the new Cityscapes-OP dataset and the public OPA dataset, as well as demonstrate its potential in applications such as data augmentation and multi-object placement tasks. Our dataset and code will be released.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition\",\"authors\":\"Jiacheng Liu, Hang Zhou, Shida Wei, Rui Ma\",\"doi\":\"10.1111/cgf.15246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we address the problem of plausible object placement for the challenging task of realistic image composition. We propose DiffPop, the first framework that utilizes plausibility-guided denoising diffusion probabilistic model to learn the scale and spatial relations among multiple objects and the corresponding scene image. First, we train an unguided diffusion model to directly learn the object placement parameters in a self-supervised manner. Then, we develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images to provide the weak supervision for training a structural plausibility classifier. The classifier is further used to guide the diffusion sampling process towards generating the plausible object placement. Experimental results verify the superiority of our method for producing plausible and diverse composite images on the new Cityscapes-OP dataset and the public OPA dataset, as well as demonstrate its potential in applications such as data augmentation and multi-object placement tasks. Our dataset and code will be released.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15246\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15246","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition
In this paper, we address the problem of plausible object placement for the challenging task of realistic image composition. We propose DiffPop, the first framework that utilizes plausibility-guided denoising diffusion probabilistic model to learn the scale and spatial relations among multiple objects and the corresponding scene image. First, we train an unguided diffusion model to directly learn the object placement parameters in a self-supervised manner. Then, we develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images to provide the weak supervision for training a structural plausibility classifier. The classifier is further used to guide the diffusion sampling process towards generating the plausible object placement. Experimental results verify the superiority of our method for producing plausible and diverse composite images on the new Cityscapes-OP dataset and the public OPA dataset, as well as demonstrate its potential in applications such as data augmentation and multi-object placement tasks. Our dataset and code will be released.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.