{"title":"用于高效图像去重的密度感知扩散模型","authors":"Ling Zhang, Wenxu Bai, Chunxia Xiao","doi":"10.1111/cgf.15221","DOIUrl":null,"url":null,"abstract":"<p>Existing image dehazing methods have made remarkable progress. However, they generally perform poorly on images with dense haze, and often suffer from unsatisfactory results with detail degradation or color distortion. In this paper, we propose a density-aware diffusion model (DADM) for image dehazing. Guided by the haze density, our DADM can handle images with dense haze and complex environments. Specifically, we introduce a density-aware dehazing network (DADNet) in the reverse diffusion process, which can help DADM gradually recover a clear haze-free image from a haze image. To improve the performance of the network, we design a cross-feature density extraction module (CDEModule) to extract the haze density for the image and a density-guided feature fusion block (DFFBlock) to learn the effective contextual features. Furthermore, we introduce an indirect sampling strategy in the test sampling process, which not only suppresses the accumulation of errors but also ensures the stability of the results. Extensive experiments on popular benchmarks validate the superior performance of the proposed method. The code is released in https://github.com/benchacha/DADM.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density-Aware Diffusion Model for Efficient Image Dehazing\",\"authors\":\"Ling Zhang, Wenxu Bai, Chunxia Xiao\",\"doi\":\"10.1111/cgf.15221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing image dehazing methods have made remarkable progress. However, they generally perform poorly on images with dense haze, and often suffer from unsatisfactory results with detail degradation or color distortion. In this paper, we propose a density-aware diffusion model (DADM) for image dehazing. Guided by the haze density, our DADM can handle images with dense haze and complex environments. Specifically, we introduce a density-aware dehazing network (DADNet) in the reverse diffusion process, which can help DADM gradually recover a clear haze-free image from a haze image. To improve the performance of the network, we design a cross-feature density extraction module (CDEModule) to extract the haze density for the image and a density-guided feature fusion block (DFFBlock) to learn the effective contextual features. Furthermore, we introduce an indirect sampling strategy in the test sampling process, which not only suppresses the accumulation of errors but also ensures the stability of the results. Extensive experiments on popular benchmarks validate the superior performance of the proposed method. The code is released in https://github.com/benchacha/DADM.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15221\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15221","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Density-Aware Diffusion Model for Efficient Image Dehazing
Existing image dehazing methods have made remarkable progress. However, they generally perform poorly on images with dense haze, and often suffer from unsatisfactory results with detail degradation or color distortion. In this paper, we propose a density-aware diffusion model (DADM) for image dehazing. Guided by the haze density, our DADM can handle images with dense haze and complex environments. Specifically, we introduce a density-aware dehazing network (DADNet) in the reverse diffusion process, which can help DADM gradually recover a clear haze-free image from a haze image. To improve the performance of the network, we design a cross-feature density extraction module (CDEModule) to extract the haze density for the image and a density-guided feature fusion block (DFFBlock) to learn the effective contextual features. Furthermore, we introduce an indirect sampling strategy in the test sampling process, which not only suppresses the accumulation of errors but also ensures the stability of the results. Extensive experiments on popular benchmarks validate the superior performance of the proposed method. The code is released in https://github.com/benchacha/DADM.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.