利用密集深度的二维图像融合进行三维语义分割的对抗性无监督领域自适应

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-10-24 DOI:10.1111/cgf.15250
Xindan Zhang, Ying Li, Huankun Sheng, Xinnian Zhang
{"title":"利用密集深度的二维图像融合进行三维语义分割的对抗性无监督领域自适应","authors":"Xindan Zhang,&nbsp;Ying Li,&nbsp;Huankun Sheng,&nbsp;Xinnian Zhang","doi":"10.1111/cgf.15250","DOIUrl":null,"url":null,"abstract":"<p>Unsupervised domain adaptation (UDA) is increasingly used for 3D point cloud semantic segmentation tasks due to its ability to address the issue of missing labels for new domains. However, most existing unsupervised domain adaptation methods focus only on uni-modal data and are rarely applied to multi-modal data. Therefore, we propose a cross-modal UDA on multi-modal datasets that contain 3D point clouds and 2D images for 3D Semantic Segmentation. Specifically, we first propose a Dual discriminator-based Domain Adaptation (Dd-bDA) module to enhance the adaptability of different domains. Second, given that the robustness of depth information to domain shifts can provide more details for semantic segmentation, we further employ a Dense depth Feature Fusion (DdFF) module to extract image features with rich depth cues. We evaluate our model in four unsupervised domain adaptation scenarios, i.e., dataset-to-dataset (A2D2 → SemanticKITTI), Day-to-Night, country-to-country (USA → Singapore), and synthetic-to-real (VirtualKITTI → SemanticKITTI). In all settings, the experimental results achieve significant improvements and surpass state-of-the-art models.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adversarial Unsupervised Domain Adaptation for 3D Semantic Segmentation with 2D Image Fusion of Dense Depth\",\"authors\":\"Xindan Zhang,&nbsp;Ying Li,&nbsp;Huankun Sheng,&nbsp;Xinnian Zhang\",\"doi\":\"10.1111/cgf.15250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unsupervised domain adaptation (UDA) is increasingly used for 3D point cloud semantic segmentation tasks due to its ability to address the issue of missing labels for new domains. However, most existing unsupervised domain adaptation methods focus only on uni-modal data and are rarely applied to multi-modal data. Therefore, we propose a cross-modal UDA on multi-modal datasets that contain 3D point clouds and 2D images for 3D Semantic Segmentation. Specifically, we first propose a Dual discriminator-based Domain Adaptation (Dd-bDA) module to enhance the adaptability of different domains. Second, given that the robustness of depth information to domain shifts can provide more details for semantic segmentation, we further employ a Dense depth Feature Fusion (DdFF) module to extract image features with rich depth cues. We evaluate our model in four unsupervised domain adaptation scenarios, i.e., dataset-to-dataset (A2D2 → SemanticKITTI), Day-to-Night, country-to-country (USA → Singapore), and synthetic-to-real (VirtualKITTI → SemanticKITTI). In all settings, the experimental results achieve significant improvements and surpass state-of-the-art models.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15250\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

无监督领域适应(UDA)由于能够解决新领域标签缺失的问题,越来越多地被用于三维点云语义分割任务。然而,现有的大多数无监督域适应方法只关注单模态数据,很少应用于多模态数据。因此,我们在包含三维点云和二维图像的多模态数据集上提出了一种用于三维语义分割的跨模态 UDA。具体来说,我们首先提出了基于双判别器的领域适应(Dd-bDA)模块,以增强不同领域的适应性。其次,鉴于深度信息对域偏移的鲁棒性可以为语义分割提供更多细节,我们进一步采用了密集深度特征融合(DdFF)模块来提取具有丰富深度线索的图像特征。我们在四种无监督领域适应场景中评估了我们的模型,即数据集到数据集(A2D2 → SemanticKITTI)、白天到黑夜、国家到国家(美国 → 新加坡)以及合成到真实(VirtualKITTI → SemanticKITTI)。在所有设置中,实验结果都取得了显著的改进,并超越了最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adversarial Unsupervised Domain Adaptation for 3D Semantic Segmentation with 2D Image Fusion of Dense Depth

Unsupervised domain adaptation (UDA) is increasingly used for 3D point cloud semantic segmentation tasks due to its ability to address the issue of missing labels for new domains. However, most existing unsupervised domain adaptation methods focus only on uni-modal data and are rarely applied to multi-modal data. Therefore, we propose a cross-modal UDA on multi-modal datasets that contain 3D point clouds and 2D images for 3D Semantic Segmentation. Specifically, we first propose a Dual discriminator-based Domain Adaptation (Dd-bDA) module to enhance the adaptability of different domains. Second, given that the robustness of depth information to domain shifts can provide more details for semantic segmentation, we further employ a Dense depth Feature Fusion (DdFF) module to extract image features with rich depth cues. We evaluate our model in four unsupervised domain adaptation scenarios, i.e., dataset-to-dataset (A2D2 → SemanticKITTI), Day-to-Night, country-to-country (USA → Singapore), and synthetic-to-real (VirtualKITTI → SemanticKITTI). In all settings, the experimental results achieve significant improvements and surpass state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting iShapEditing: Intelligent Shape Editing with Diffusion Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1