通过基于变压器的非线性回归进行分解寿命合成

IF 2.7 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Computer Graphics Forum Pub Date : 2024-10-24 DOI:10.1111/cgf.15229
Mingyuan Li, Yingchun Guo
{"title":"通过基于变压器的非线性回归进行分解寿命合成","authors":"Mingyuan Li,&nbsp;Yingchun Guo","doi":"10.1111/cgf.15229","DOIUrl":null,"url":null,"abstract":"<p>Lifespan face age transformation aims to generate facial images that accurately depict an individual's appearance at different age stages. This task is highly challenging due to the need for reasonable changes in facial features while preserving identity characteristics. Existing methods tend to synthesize unsatisfactory results, such as entangled facial attributes and low identity preservation, especially when dealing with large age gaps. Furthermore, over-manipulating the style vector may deviate it from the latent space and damage image quality. To address these issues, this paper introduces a novel nonlinear regression model-<b>D</b>isentangled <b>L</b>ifespan face <b>Aging</b> (DL-Aging) to achieve high-quality age transformation images. Specifically, we propose an age modulation encoder to extract age-related multi-scale facial features as key and value, and use the reconstructed style vector of the image as the query. The multi-head cross-attention in the W<sup>+</sup> space is utilized to update the query for aging image reconstruction iteratively. This nonlinear transformation enables the model to learn a more disentangled mode of transformation, which is crucial for alleviating facial attribute entanglement. Additionally, we introduce a W<sup>+</sup> space age regularization term to prevent excessive manipulation of the style vector and ensure it remains within the W<sup>+</sup> space during transformation, thereby improving generation quality and aging accuracy. Extensive qualitative and quantitative experiments demonstrate that the proposed DL-Aging outperforms state-of-the-art methods regarding aging accuracy, image quality, attribute disentanglement, and identity preservation, especially for large age gaps.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disentangled Lifespan Synthesis via Transformer-Based Nonlinear Regression\",\"authors\":\"Mingyuan Li,&nbsp;Yingchun Guo\",\"doi\":\"10.1111/cgf.15229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Lifespan face age transformation aims to generate facial images that accurately depict an individual's appearance at different age stages. This task is highly challenging due to the need for reasonable changes in facial features while preserving identity characteristics. Existing methods tend to synthesize unsatisfactory results, such as entangled facial attributes and low identity preservation, especially when dealing with large age gaps. Furthermore, over-manipulating the style vector may deviate it from the latent space and damage image quality. To address these issues, this paper introduces a novel nonlinear regression model-<b>D</b>isentangled <b>L</b>ifespan face <b>Aging</b> (DL-Aging) to achieve high-quality age transformation images. Specifically, we propose an age modulation encoder to extract age-related multi-scale facial features as key and value, and use the reconstructed style vector of the image as the query. The multi-head cross-attention in the W<sup>+</sup> space is utilized to update the query for aging image reconstruction iteratively. This nonlinear transformation enables the model to learn a more disentangled mode of transformation, which is crucial for alleviating facial attribute entanglement. Additionally, we introduce a W<sup>+</sup> space age regularization term to prevent excessive manipulation of the style vector and ensure it remains within the W<sup>+</sup> space during transformation, thereby improving generation quality and aging accuracy. Extensive qualitative and quantitative experiments demonstrate that the proposed DL-Aging outperforms state-of-the-art methods regarding aging accuracy, image quality, attribute disentanglement, and identity preservation, especially for large age gaps.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15229\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15229","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

生命周期面部年龄变换的目的是生成能准确描绘个人在不同年龄阶段外貌的面部图像。这项任务极具挑战性,因为需要在保留身份特征的同时合理改变面部特征。现有的方法往往合成出不令人满意的结果,如面部属性纠缠不清和身份保留率低,尤其是在处理较大的年龄差距时。此外,对风格向量的过度操作可能会使其偏离潜在空间,从而损害图像质量。为了解决这些问题,本文引入了一个新颖的非线性回归模型--Disentangled Lifespan face Aging(DL-Aging),以实现高质量的年龄转换图像。具体来说,我们提出了一种年龄调制编码器,以提取与年龄相关的多尺度面部特征作为键和值,并将重建后的图像样式向量作为查询。利用 W+ 空间中的多头交叉关注来迭代更新老化图像重建的查询。这种非线性变换能使模型学习到更多的分解变换模式,这对减轻面部属性纠缠至关重要。此外,我们还引入了 W+ 空间年龄正则项,以防止对风格向量的过度操作,并确保其在转换过程中保持在 W+ 空间内,从而提高生成质量和老化准确性。广泛的定性和定量实验证明,所提出的 DL-Aging 在老化准确性、图像质量、属性纠缠和身份保持方面都优于最先进的方法,尤其是在年龄差距较大的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Disentangled Lifespan Synthesis via Transformer-Based Nonlinear Regression

Lifespan face age transformation aims to generate facial images that accurately depict an individual's appearance at different age stages. This task is highly challenging due to the need for reasonable changes in facial features while preserving identity characteristics. Existing methods tend to synthesize unsatisfactory results, such as entangled facial attributes and low identity preservation, especially when dealing with large age gaps. Furthermore, over-manipulating the style vector may deviate it from the latent space and damage image quality. To address these issues, this paper introduces a novel nonlinear regression model-Disentangled Lifespan face Aging (DL-Aging) to achieve high-quality age transformation images. Specifically, we propose an age modulation encoder to extract age-related multi-scale facial features as key and value, and use the reconstructed style vector of the image as the query. The multi-head cross-attention in the W+ space is utilized to update the query for aging image reconstruction iteratively. This nonlinear transformation enables the model to learn a more disentangled mode of transformation, which is crucial for alleviating facial attribute entanglement. Additionally, we introduce a W+ space age regularization term to prevent excessive manipulation of the style vector and ensure it remains within the W+ space during transformation, thereby improving generation quality and aging accuracy. Extensive qualitative and quantitative experiments demonstrate that the proposed DL-Aging outperforms state-of-the-art methods regarding aging accuracy, image quality, attribute disentanglement, and identity preservation, especially for large age gaps.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
期刊最新文献
DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition Front Matter LGSur-Net: A Local Gaussian Surface Representation Network for Upsampling Highly Sparse Point Cloud 𝒢-Style: Stylized Gaussian Splatting iShapEditing: Intelligent Shape Editing with Diffusion Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1