{"title":"TaNSR:利用四面体差分和特征聚合实现高效三维重建","authors":"Zhaohan Lv, Xingcan Bao, Yong Tang, Jing Zhao","doi":"10.1111/cgf.15207","DOIUrl":null,"url":null,"abstract":"<p>Neural surface reconstruction methods have demonstrated their ability to recover 3D surfaces from multiple images. However, current approaches struggle to rapidly achieve high-fidelity surface reconstructions. In this work, we propose TaNSR, which inherits the speed advantages of multi-resolution hash encodings and extends its representation capabilities. To reduce training time, we propose an efficient numerical gradient computation method that significantly reduces additional memory access overhead. To further improve reconstruction quality and expedite training, we propose a feature aggregation strategy in volume rendering. Building on this, we introduce an adaptively weighted aggregation function to ensure the network can accurately reconstruct the surface of objects and recover more geometric details. Experiments on multiple datasets indicate that TaNSR significantly reduces training time while achieving better reconstruction accuracy compared to state-of-the-art nerual implicit methods.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TaNSR:Efficient 3D Reconstruction with Tetrahedral Difference and Feature Aggregation\",\"authors\":\"Zhaohan Lv, Xingcan Bao, Yong Tang, Jing Zhao\",\"doi\":\"10.1111/cgf.15207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Neural surface reconstruction methods have demonstrated their ability to recover 3D surfaces from multiple images. However, current approaches struggle to rapidly achieve high-fidelity surface reconstructions. In this work, we propose TaNSR, which inherits the speed advantages of multi-resolution hash encodings and extends its representation capabilities. To reduce training time, we propose an efficient numerical gradient computation method that significantly reduces additional memory access overhead. To further improve reconstruction quality and expedite training, we propose a feature aggregation strategy in volume rendering. Building on this, we introduce an adaptively weighted aggregation function to ensure the network can accurately reconstruct the surface of objects and recover more geometric details. Experiments on multiple datasets indicate that TaNSR significantly reduces training time while achieving better reconstruction accuracy compared to state-of-the-art nerual implicit methods.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15207\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
TaNSR:Efficient 3D Reconstruction with Tetrahedral Difference and Feature Aggregation
Neural surface reconstruction methods have demonstrated their ability to recover 3D surfaces from multiple images. However, current approaches struggle to rapidly achieve high-fidelity surface reconstructions. In this work, we propose TaNSR, which inherits the speed advantages of multi-resolution hash encodings and extends its representation capabilities. To reduce training time, we propose an efficient numerical gradient computation method that significantly reduces additional memory access overhead. To further improve reconstruction quality and expedite training, we propose a feature aggregation strategy in volume rendering. Building on this, we introduce an adaptively weighted aggregation function to ensure the network can accurately reconstruct the surface of objects and recover more geometric details. Experiments on multiple datasets indicate that TaNSR significantly reduces training time while achieving better reconstruction accuracy compared to state-of-the-art nerual implicit methods.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.