{"title":"探索快速灵活的零镜头低照度图像/视频增强技术","authors":"Xianjun Han, Taoli Bao, Hongyu Yang","doi":"10.1111/cgf.15210","DOIUrl":null,"url":null,"abstract":"<p>Low-light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate this task as an image-to-image conversion task via supervised or unsupervised learning. However, such conversion methods require an extremely large amount of data for training, whether paired or unpaired. In addition, these methods are restricted to specific training data, making it difficult for the trained model to enhance other types of images or video. In this paper, we explore a novel, fast and flexible, zero-shot, low-light image or video enhancement framework. Without relying on prior training or relationships among neighboring frames, we are committed to estimating the illumination of the input image/frame by a well-designed network. The proposed zero-shot, low-light image/video enhancement architecture includes illumination estimation and residual correction modules. The network architecture is very concise and does not require any paired or unpaired data during training, which allows low-light enhancement to be performed with several simple iterations. Despite its simplicity, we show that the method is fast and generalizes well to diverse lighting conditions. Many experiments on various images and videos qualitatively and quantitatively demonstrate the advantages of our method over state-of-the-art methods.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Fast and Flexible Zero-Shot Low-Light Image/Video Enhancement\",\"authors\":\"Xianjun Han, Taoli Bao, Hongyu Yang\",\"doi\":\"10.1111/cgf.15210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Low-light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate this task as an image-to-image conversion task via supervised or unsupervised learning. However, such conversion methods require an extremely large amount of data for training, whether paired or unpaired. In addition, these methods are restricted to specific training data, making it difficult for the trained model to enhance other types of images or video. In this paper, we explore a novel, fast and flexible, zero-shot, low-light image or video enhancement framework. Without relying on prior training or relationships among neighboring frames, we are committed to estimating the illumination of the input image/frame by a well-designed network. The proposed zero-shot, low-light image/video enhancement architecture includes illumination estimation and residual correction modules. The network architecture is very concise and does not require any paired or unpaired data during training, which allows low-light enhancement to be performed with several simple iterations. Despite its simplicity, we show that the method is fast and generalizes well to diverse lighting conditions. Many experiments on various images and videos qualitatively and quantitatively demonstrate the advantages of our method over state-of-the-art methods.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15210\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15210","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Exploring Fast and Flexible Zero-Shot Low-Light Image/Video Enhancement
Low-light image/video enhancement is a challenging task when images or video are captured under harsh lighting conditions. Existing methods mostly formulate this task as an image-to-image conversion task via supervised or unsupervised learning. However, such conversion methods require an extremely large amount of data for training, whether paired or unpaired. In addition, these methods are restricted to specific training data, making it difficult for the trained model to enhance other types of images or video. In this paper, we explore a novel, fast and flexible, zero-shot, low-light image or video enhancement framework. Without relying on prior training or relationships among neighboring frames, we are committed to estimating the illumination of the input image/frame by a well-designed network. The proposed zero-shot, low-light image/video enhancement architecture includes illumination estimation and residual correction modules. The network architecture is very concise and does not require any paired or unpaired data during training, which allows low-light enhancement to be performed with several simple iterations. Despite its simplicity, we show that the method is fast and generalizes well to diverse lighting conditions. Many experiments on various images and videos qualitatively and quantitatively demonstrate the advantages of our method over state-of-the-art methods.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.