{"title":"根据目标形状进行表面切割和压平","authors":"Yuanhao Li, Wenzheng Wu, Ligang Liu","doi":"10.1111/cgf.15223","DOIUrl":null,"url":null,"abstract":"<p>We introduce a novel framework for surface cutting and flattening, aiming to align the boundary of planar parameterization with a target shape. Diverging from traditional methods focused on minimizing distortion, we intend to also achieve shape similarity between the parameterized mesh and a specific planar target, which is important in some applications of art design and texture mapping. However, with existing methods commonly limited to ellipsoidal surfaces, it still remains a challenge to solve this problem on general surfaces. Our framework models the general case as a joint optimization of cuts and parameterization, guided by a novel metric assessing shape similarity. To circumvent the common issue of local minima, we introduce an extra global seam updating strategy which is guided by the target shape. Experimental results show that our framework not only aligns with previous approaches on ellipsoidal surfaces but also achieves satisfactory results on more complex ones.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"43 7","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Cutting and Flattening to Target Shapes\",\"authors\":\"Yuanhao Li, Wenzheng Wu, Ligang Liu\",\"doi\":\"10.1111/cgf.15223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce a novel framework for surface cutting and flattening, aiming to align the boundary of planar parameterization with a target shape. Diverging from traditional methods focused on minimizing distortion, we intend to also achieve shape similarity between the parameterized mesh and a specific planar target, which is important in some applications of art design and texture mapping. However, with existing methods commonly limited to ellipsoidal surfaces, it still remains a challenge to solve this problem on general surfaces. Our framework models the general case as a joint optimization of cuts and parameterization, guided by a novel metric assessing shape similarity. To circumvent the common issue of local minima, we introduce an extra global seam updating strategy which is guided by the target shape. Experimental results show that our framework not only aligns with previous approaches on ellipsoidal surfaces but also achieves satisfactory results on more complex ones.</p>\",\"PeriodicalId\":10687,\"journal\":{\"name\":\"Computer Graphics Forum\",\"volume\":\"43 7\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics Forum\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15223\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.15223","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
We introduce a novel framework for surface cutting and flattening, aiming to align the boundary of planar parameterization with a target shape. Diverging from traditional methods focused on minimizing distortion, we intend to also achieve shape similarity between the parameterized mesh and a specific planar target, which is important in some applications of art design and texture mapping. However, with existing methods commonly limited to ellipsoidal surfaces, it still remains a challenge to solve this problem on general surfaces. Our framework models the general case as a joint optimization of cuts and parameterization, guided by a novel metric assessing shape similarity. To circumvent the common issue of local minima, we introduce an extra global seam updating strategy which is guided by the target shape. Experimental results show that our framework not only aligns with previous approaches on ellipsoidal surfaces but also achieves satisfactory results on more complex ones.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.