{"title":"CircDYRK1A 通过结合 miR21-5p 影响 KLF5 基因的表达来调控牛肌母细胞的发育","authors":"Peng Yang, Xinmiao Li, Lei Du, Shijie Lyu, Zijing Zhang, Fengpeng Lin, Xinglei Qi, Xian Liu, Eryao Wang, Chuzhao Lei, Yongzhen Huang","doi":"10.1002/aro2.76","DOIUrl":null,"url":null,"abstract":"<p>Circular RNA (circRNA), a stable ring-shaped RNA molecule found in eukaryotic cells, plays significant roles in biological regulation, particularly by interfering with transcription factor binding or enhancing gene expression. Using transcriptomic sequencing, we identified differentially expressed circRNAs in bovine muscle at various time points. Specifically, circDYRK1A was discovered and shown to enhance differentiation while suppressing proliferation of adult myoblasts. Rescue experiments further demonstrated that circDYRK1A regulates the KLF5 gene expression by interacting with miR21-5p, thus exerting its influence at the transcriptional level. This study marks the first identification of circDYRK1A in cattle and elucidates its role in bovine myoblast development through the circDYRK1A-miR21-5p-KLF5 regulatory axis. These findings contribute novel insights into molecular breeding of cattle and advance fundamental research on beef cattle breeding and muscle development.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":"2 4","pages":"431-445"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.76","citationCount":"0","resultStr":"{\"title\":\"CircDYRK1A regulates bovine myoblasts development by binding miR21-5p to affect KLF5 gene expression\",\"authors\":\"Peng Yang, Xinmiao Li, Lei Du, Shijie Lyu, Zijing Zhang, Fengpeng Lin, Xinglei Qi, Xian Liu, Eryao Wang, Chuzhao Lei, Yongzhen Huang\",\"doi\":\"10.1002/aro2.76\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circular RNA (circRNA), a stable ring-shaped RNA molecule found in eukaryotic cells, plays significant roles in biological regulation, particularly by interfering with transcription factor binding or enhancing gene expression. Using transcriptomic sequencing, we identified differentially expressed circRNAs in bovine muscle at various time points. Specifically, circDYRK1A was discovered and shown to enhance differentiation while suppressing proliferation of adult myoblasts. Rescue experiments further demonstrated that circDYRK1A regulates the KLF5 gene expression by interacting with miR21-5p, thus exerting its influence at the transcriptional level. This study marks the first identification of circDYRK1A in cattle and elucidates its role in bovine myoblast development through the circDYRK1A-miR21-5p-KLF5 regulatory axis. These findings contribute novel insights into molecular breeding of cattle and advance fundamental research on beef cattle breeding and muscle development.</p>\",\"PeriodicalId\":100086,\"journal\":{\"name\":\"Animal Research and One Health\",\"volume\":\"2 4\",\"pages\":\"431-445\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.76\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Research and One Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aro2.76\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Research and One Health","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aro2.76","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CircDYRK1A regulates bovine myoblasts development by binding miR21-5p to affect KLF5 gene expression
Circular RNA (circRNA), a stable ring-shaped RNA molecule found in eukaryotic cells, plays significant roles in biological regulation, particularly by interfering with transcription factor binding or enhancing gene expression. Using transcriptomic sequencing, we identified differentially expressed circRNAs in bovine muscle at various time points. Specifically, circDYRK1A was discovered and shown to enhance differentiation while suppressing proliferation of adult myoblasts. Rescue experiments further demonstrated that circDYRK1A regulates the KLF5 gene expression by interacting with miR21-5p, thus exerting its influence at the transcriptional level. This study marks the first identification of circDYRK1A in cattle and elucidates its role in bovine myoblast development through the circDYRK1A-miR21-5p-KLF5 regulatory axis. These findings contribute novel insights into molecular breeding of cattle and advance fundamental research on beef cattle breeding and muscle development.