Zoonotic diseases remain a persistent threat to global public health. Many major zoonotic pathogens exhibit seasonal patterns associated with climatic variations. Quantifying the impacts of environmental variables such as temperature and humidity on disease transmission dynamics is critical for improving prediction and control measures. This review synthesizes current evidence on the relationships between temperature and humidity and major zoonotic diseases, including malaria, dengue, rabies, anisakiasis, and influenza. Overall, this review highlighted some overarching themes across the different zoonotic diseases examined. Higher temperatures within suitable ranges were generally associated with increased transmission risks, while excessively high or low temperatures had adverse effects. Humidity exhibited complex nonlinear relationships, facilitating transmission in certain temperature zones but inhibiting it in others. Heavy rainfall and high humidity were linked to vector-borne disease outbreaks such as malaria by enabling vector breeding. However, reduced incidence of some diseases like dengue fever was observed with high rainfall. To address existing knowledge gaps, future research efforts should prioritize several key areas: enhancing data quality through robust surveillance and the integration of high-resolution microclimate data; standardizing analytical frameworks and leveraging advanced methodologies such as machine learning; conducting mechanistic studies to elucidate pathogen, vector, and host responses to climatic stimuli; adopting interdisciplinary approaches to account for interacting drivers; and projecting disease impacts under various climate change scenarios to inform adaptation strategies. Investing in these research priorities can propel the development of evidence-based climate-aware disease prediction and control measures, ultimately safeguarding public health more effectively.
{"title":"Temperature and humidity as drivers for the transmission of zoonotic diseases","authors":"Li Zhang, Chenrui Lv, Wenqiang Guo, Zhenzhuo Li","doi":"10.1002/aro2.75","DOIUrl":"https://doi.org/10.1002/aro2.75","url":null,"abstract":"<p>Zoonotic diseases remain a persistent threat to global public health. Many major zoonotic pathogens exhibit seasonal patterns associated with climatic variations. Quantifying the impacts of environmental variables such as temperature and humidity on disease transmission dynamics is critical for improving prediction and control measures. This review synthesizes current evidence on the relationships between temperature and humidity and major zoonotic diseases, including malaria, dengue, rabies, anisakiasis, and influenza. Overall, this review highlighted some overarching themes across the different zoonotic diseases examined. Higher temperatures within suitable ranges were generally associated with increased transmission risks, while excessively high or low temperatures had adverse effects. Humidity exhibited complex nonlinear relationships, facilitating transmission in certain temperature zones but inhibiting it in others. Heavy rainfall and high humidity were linked to vector-borne disease outbreaks such as malaria by enabling vector breeding. However, reduced incidence of some diseases like dengue fever was observed with high rainfall. To address existing knowledge gaps, future research efforts should prioritize several key areas: enhancing data quality through robust surveillance and the integration of high-resolution microclimate data; standardizing analytical frameworks and leveraging advanced methodologies such as machine learning; conducting mechanistic studies to elucidate pathogen, vector, and host responses to climatic stimuli; adopting interdisciplinary approaches to account for interacting drivers; and projecting disease impacts under various climate change scenarios to inform adaptation strategies. Investing in these research priorities can propel the development of evidence-based climate-aware disease prediction and control measures, ultimately safeguarding public health more effectively.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.75","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The aim of this study was to investigate the mechanism of iron homeostasis and the ferroptosis pathway for yolk sac atrophy during late embryogenesis. To study the mechanism of yolk sac atrophy, 100 eggs were used. Further, 500 eggs were randomly divided into five treatments and in ovo feeding with different iron sources, such as FeSO4, ferrous glycinate (Fe-Gly), or deferoxamine (DFO), to study the effects of free iron content on hatching quality and embryonic development. The results showed that total iron content of yolk decreased, but yolk sac increased from embryonic(E)13 to E19 (p < 0.05). Comparison of gene expression of iron transport systems showed that free iron accumulation and dysfunction occurred in the yolk sac. Yolk sac metabolites at E19 compared to E13 were more enriched in histidine and sulfur pathways, suppressing glutathione synthesis and resulting in oxidative stress damage in the yolk sac. Combined analysis of differential metabolites and gene expression in ferroptosis pathway at E13 and E19 revealed the activation of the yolk sac during late embryogenesis was probably through up-regulation of ACSL4 expression and down-regulation of GPX4 expression. Furthermore, in ovo feeding FeSO4 shortened the incubation time compared to CON, while Fe-Gly or DFO delayed the hatching peak and increased hatching weight with less residual yolk. Collectively, it can be concluded that yolk sac atrophy during late embryogenesis may be mediated by iron disorders and provides a novel insight to modulate yolk sac nutrition, and hatching efficiency in chickens.
{"title":"Free iron accumulation and oxidative stress burden induce ferroptotic atrophy of chicken yolk sac during the late embryogenesis","authors":"Huichao Liu, Zehe Song, Xi He, Haihan Zhang","doi":"10.1002/aro2.74","DOIUrl":"10.1002/aro2.74","url":null,"abstract":"<p>The aim of this study was to investigate the mechanism of iron homeostasis and the ferroptosis pathway for yolk sac atrophy during late embryogenesis. To study the mechanism of yolk sac atrophy, 100 eggs were used. Further, 500 eggs were randomly divided into five treatments and in ovo feeding with different iron sources, such as FeSO<sub>4</sub>, ferrous glycinate (Fe-Gly), or deferoxamine (DFO), to study the effects of free iron content on hatching quality and embryonic development. The results showed that total iron content of yolk decreased, but yolk sac increased from embryonic(E)13 to E19 (<i>p</i> < 0.05). Comparison of gene expression of iron transport systems showed that free iron accumulation and dysfunction occurred in the yolk sac. Yolk sac metabolites at E19 compared to E13 were more enriched in histidine and sulfur pathways, suppressing glutathione synthesis and resulting in oxidative stress damage in the yolk sac. Combined analysis of differential metabolites and gene expression in ferroptosis pathway at E13 and E19 revealed the activation of the yolk sac during late embryogenesis was probably through up-regulation of <i>ACSL4</i> expression and down-regulation of <i>GPX4</i> expression. Furthermore, in ovo feeding FeSO<sub>4</sub> shortened the incubation time compared to CON, while Fe-Gly or DFO delayed the hatching peak and increased hatching weight with less residual yolk. Collectively, it can be concluded that yolk sac atrophy during late embryogenesis may be mediated by iron disorders and provides a novel insight to modulate yolk sac nutrition, and hatching efficiency in chickens.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.74","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141668547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenqi Lou, Luiz F. Brito, Xiuxin Zhao, Valentina Bonfatti, Jianbin Li, Yachun Wang
Milk mid‐infrared (MIR) spectra have been shown to provide valuable information on a wide range of traits to be used in dairy cattle breeding programs. Selecting the most informative variables from complex data can improve the prediction accuracy and model robustness and, consequently, the interpretability of MIR spectra. Thus, we aimed to investigate the prediction performance of feature selection methods based on MIR spectra data, using the milk fatty acid (FA) profile as an example to illustrate the evaluated procedure. Data of MIR spectra, milk test‐day records, and reference FA concentrations of 155 first‐parity Holstein cows were used in the analyses. Four models comprising different explanatory variables and three feature selection methods were evaluated. The results indicated that competitive adaptive reweighted sampling (CARS) method can effectively select the most informative variables from the MIR spectra, resulting in higher prediction accuracies than other variable selection approaches. The model including selected MIR spectra and cow information variables yielded the best FA profile predictions based on partial least square regression. C8:0, C10:0, C14:1, C17:0 isomers, C18:1, C18:1 isomer, medium‐chain FA, unsaturation FA, monounsaturated FA, and polyunsaturated FA presented accuracies based on the determination coefficient ranging from 0.66 to 0.85 in internal validation and from 0.65 to 0.84 in external validation. The most related wavenumbers to 35 FAs were found within 1003 to 1145 cm−1. Generally, using CARS and cow information improved predictions of FAs based on MIR spectra in Chinese Holstein dairy cows. Additional validation studies should be conducted as larger datasets become available.
{"title":"Selection of the most informative wavenumbers to improve prediction accuracy of milk fatty acid profile based on milk mid‐infrared spectra data","authors":"Wenqi Lou, Luiz F. Brito, Xiuxin Zhao, Valentina Bonfatti, Jianbin Li, Yachun Wang","doi":"10.1002/aro2.72","DOIUrl":"https://doi.org/10.1002/aro2.72","url":null,"abstract":"Milk mid‐infrared (MIR) spectra have been shown to provide valuable information on a wide range of traits to be used in dairy cattle breeding programs. Selecting the most informative variables from complex data can improve the prediction accuracy and model robustness and, consequently, the interpretability of MIR spectra. Thus, we aimed to investigate the prediction performance of feature selection methods based on MIR spectra data, using the milk fatty acid (FA) profile as an example to illustrate the evaluated procedure. Data of MIR spectra, milk test‐day records, and reference FA concentrations of 155 first‐parity Holstein cows were used in the analyses. Four models comprising different explanatory variables and three feature selection methods were evaluated. The results indicated that competitive adaptive reweighted sampling (CARS) method can effectively select the most informative variables from the MIR spectra, resulting in higher prediction accuracies than other variable selection approaches. The model including selected MIR spectra and cow information variables yielded the best FA profile predictions based on partial least square regression. C8:0, C10:0, C14:1, C17:0 isomers, C18:1, C18:1 isomer, medium‐chain FA, unsaturation FA, monounsaturated FA, and polyunsaturated FA presented accuracies based on the determination coefficient ranging from 0.66 to 0.85 in internal validation and from 0.65 to 0.84 in external validation. The most related wavenumbers to 35 FAs were found within 1003 to 1145 cm−1. Generally, using CARS and cow information improved predictions of FAs based on MIR spectra in Chinese Holstein dairy cows. Additional validation studies should be conducted as larger datasets become available.","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141670074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Sun, Junjie Ma, Chaohui Wang, Z. Ren, Xin Yang, Xiaojun Yang, Yanli Liu
Fatty liver syndrome (FLS) poses a threat to the poultry industry due to its high occurrence and mortality rate. Folic acid (FA) is a coenzyme crucial for one‐carbon metabolism. However, the mechanism by which FA mitigates FLS in laying hens remains elusive. In this study, 60 21‐week‐old Hy‐Line Brown layers were divided into three groups: the Control (Con) group, the dexamethasone (DXM) group, and the DXM + FA group. Results showed that liver index was significantly increased in the DXM group. H&E and oil red O staining showed the accumulation of lipid droplets in the liver was intensified, confirming the successful establishment of an early fatty liver model without inflammation. FA significantly reversed hepatic lipid deposition, and 57 differentially expressed genes affected by FA were identified in the transcriptome analysis. Their transcriptional and translational levels indicate that in the early FLS, insulin‐like growth factor 2/phosphatidylinositol‐3‐kinase/protein kinase B pathway related to lipid metabolism was activated; folate cycling was inhibited, while endoplasmic reticulum (ER) stress and apoptosis‐related protein abundance were elevated. Dietary FA enhanced the folate circulation, reduced lipogenesis and ER stress, and apoptosis‐related protein expression, thereby mitigating the lipid metabolism disturbance in FLS. Metabolomics identified 151 differential metabolites involved in early FLS occurrence, 34 of which were reversed by FA. Metabolites were also enriched in pathways related to lipid metabolism and hepatic damage. Collectively, these findings can be concluded that FA can alleviate early FLS by affecting lipogenesis, ER stress and apoptosis, which may be mediated by enhanced folate metabolism.
{"title":"Functional roles of folic acid in alleviating dexamethasone‐induced fatty liver syndrome in laying hens","authors":"Xi Sun, Junjie Ma, Chaohui Wang, Z. Ren, Xin Yang, Xiaojun Yang, Yanli Liu","doi":"10.1002/aro2.73","DOIUrl":"https://doi.org/10.1002/aro2.73","url":null,"abstract":"Fatty liver syndrome (FLS) poses a threat to the poultry industry due to its high occurrence and mortality rate. Folic acid (FA) is a coenzyme crucial for one‐carbon metabolism. However, the mechanism by which FA mitigates FLS in laying hens remains elusive. In this study, 60 21‐week‐old Hy‐Line Brown layers were divided into three groups: the Control (Con) group, the dexamethasone (DXM) group, and the DXM + FA group. Results showed that liver index was significantly increased in the DXM group. H&E and oil red O staining showed the accumulation of lipid droplets in the liver was intensified, confirming the successful establishment of an early fatty liver model without inflammation. FA significantly reversed hepatic lipid deposition, and 57 differentially expressed genes affected by FA were identified in the transcriptome analysis. Their transcriptional and translational levels indicate that in the early FLS, insulin‐like growth factor 2/phosphatidylinositol‐3‐kinase/protein kinase B pathway related to lipid metabolism was activated; folate cycling was inhibited, while endoplasmic reticulum (ER) stress and apoptosis‐related protein abundance were elevated. Dietary FA enhanced the folate circulation, reduced lipogenesis and ER stress, and apoptosis‐related protein expression, thereby mitigating the lipid metabolism disturbance in FLS. Metabolomics identified 151 differential metabolites involved in early FLS occurrence, 34 of which were reversed by FA. Metabolites were also enriched in pathways related to lipid metabolism and hepatic damage. Collectively, these findings can be concluded that FA can alleviate early FLS by affecting lipogenesis, ER stress and apoptosis, which may be mediated by enhanced folate metabolism.","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141684274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the process of rapid fattening and rearing of meat sheep, yellow fat disease of sheep occurs frequently. This study aims to investigate the preliminary pathogenesis of yellow fat disease in sheep. Eighteen healthy sheep (4–5 months old, 34 ± 1 kg) were selected and randomly divided into three groups: the 10 ppm copper group, the 50 ppm copper group, and the 100 ppm copper group. At the end of the experiment, blood, liver, kidney, and adipose tissue samples were taken from all sheep, and measurements of each index were taken. 50 and 100 ppm copper supplementation in the diets did not significantly affect average daily gain, total cholesterol (TC), triglyceride (TG) and sorbitol dehydrogenase in sheep but significantly increased the effects on gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase enzyme activities in the liver and increased the accumulation of copper in the liver. 50 and 100 ppm copper supplementation to the feed caused different levels of pathological damage to the liver, the kidney, and fat and significantly affected the brightness, redness, and yellowness of the carcass fat. Sheep in the 50 ppm copper group did not show significant clinical symptoms of yellow fat disease in the later period of the experiment, but those in the 100 ppm copper group showed significant clinical symptoms of yellow fat disease. Transcriptome analysis of sheep livers showed differential genes associated with yellow fat disease, and GO and KEGG analyses associated with yellow fat disease were performed, and further correlation analysis found that the occurrence of copper-induced yellow fat disease may be closely related to gene IFIT1.
{"title":"The gene IFIT1 is associated with dietary copper-induced yellow fat disease in sheep","authors":"Depeng Li, Juncai Fu","doi":"10.1002/aro2.66","DOIUrl":"https://doi.org/10.1002/aro2.66","url":null,"abstract":"<p>In the process of rapid fattening and rearing of meat sheep, yellow fat disease of sheep occurs frequently. This study aims to investigate the preliminary pathogenesis of yellow fat disease in sheep. Eighteen healthy sheep (4–5 months old, 34 ± 1 kg) were selected and randomly divided into three groups: the 10 ppm copper group, the 50 ppm copper group, and the 100 ppm copper group. At the end of the experiment, blood, liver, kidney, and adipose tissue samples were taken from all sheep, and measurements of each index were taken. 50 and 100 ppm copper supplementation in the diets did not significantly affect average daily gain, total cholesterol (TC), triglyceride (TG) and sorbitol dehydrogenase in sheep but significantly increased the effects on gamma-glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase enzyme activities in the liver and increased the accumulation of copper in the liver. 50 and 100 ppm copper supplementation to the feed caused different levels of pathological damage to the liver, the kidney, and fat and significantly affected the brightness, redness, and yellowness of the carcass fat. Sheep in the 50 ppm copper group did not show significant clinical symptoms of yellow fat disease in the later period of the experiment, but those in the 100 ppm copper group showed significant clinical symptoms of yellow fat disease. Transcriptome analysis of sheep livers showed differential genes associated with yellow fat disease, and GO and KEGG analyses associated with yellow fat disease were performed, and further correlation analysis found that the occurrence of copper-induced yellow fat disease may be closely related to gene <i>IFIT1</i>.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.66","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013515","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jumei Zheng, Qi Zhang, Xinxin Tang, Fan Ying, Dawei Liu, Sen Li, Ranran Liu, Jie Wen, QingHe Li, Guiping Zhao
Rapid body weight gain in broilers overloads the metabolic system of the organism, resulting in leg abnormalities, which seriously affects animal welfare and industry economics. In this study, broilers with normal and deformed leg bones were examined. Serum biochemical indices showed that the serum calcium to phosphorus ratio was extremely decreased in leg deformed group. In addition, abnormal serum lipid levels suggested a disruption in lipid metabolism. Based on widely targeted metabonomic analysis of serum and cartilage tissues, a total of nine differential metabolites (DMs) significantly associated with leg abnormalities and serum calcium and phosphorus levels were screened, including carnitine C16:0, carnitine C18:1, 3‐hydroxymethyl‐L‐tyrosine, cis‐4‐hydroxy‐D‐proline, cis‐L‐3‐hydroxyproline, trans‐4‐hydroxy‐L‐proline, and so on. Pathway analysis revealed that fatty acid degradation and arachidonic acid metabolism were enriched. Analysis of DMs in these two pathways showed that prostaglandin D2, prostaglandin J2, prostaglandin A2, 15‐keto prostaglandin F2α, and Δ12‐prostaglandin J2 significantly differed between the normal and abnormal groups. It was hypothesized that these important metabolic pathways and metabolites were involved in the metabolic regulation of leg abnormalities.
{"title":"Metabolomic analysis reveals the molecular mechanism related to leg abnormality in broilers","authors":"Jumei Zheng, Qi Zhang, Xinxin Tang, Fan Ying, Dawei Liu, Sen Li, Ranran Liu, Jie Wen, QingHe Li, Guiping Zhao","doi":"10.1002/aro2.63","DOIUrl":"https://doi.org/10.1002/aro2.63","url":null,"abstract":"Rapid body weight gain in broilers overloads the metabolic system of the organism, resulting in leg abnormalities, which seriously affects animal welfare and industry economics. In this study, broilers with normal and deformed leg bones were examined. Serum biochemical indices showed that the serum calcium to phosphorus ratio was extremely decreased in leg deformed group. In addition, abnormal serum lipid levels suggested a disruption in lipid metabolism. Based on widely targeted metabonomic analysis of serum and cartilage tissues, a total of nine differential metabolites (DMs) significantly associated with leg abnormalities and serum calcium and phosphorus levels were screened, including carnitine C16:0, carnitine C18:1, 3‐hydroxymethyl‐L‐tyrosine, cis‐4‐hydroxy‐D‐proline, cis‐L‐3‐hydroxyproline, trans‐4‐hydroxy‐L‐proline, and so on. Pathway analysis revealed that fatty acid degradation and arachidonic acid metabolism were enriched. Analysis of DMs in these two pathways showed that prostaglandin D2, prostaglandin J2, prostaglandin A2, 15‐keto prostaglandin F2α, and Δ12‐prostaglandin J2 significantly differed between the normal and abnormal groups. It was hypothesized that these important metabolic pathways and metabolites were involved in the metabolic regulation of leg abnormalities.","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140962305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Age at first farrowing (AFF) is a reproductive trait with low heritability and high importance in the pig industry. To enhance the statistical power of genome-wide association study (GWAS) and further explore the genetic nature of AFF, we first conducted GWAS meta-analysis using three Yorkshire populations, and then integrated the Pig Genotype-Tissue Expression (PigGTEx) resources to interpret their potential regulatory mechanism. Additionally, we compared the AFF in pig with the age at first birth (AFB) of human using GWAS summary statistics. We detected 18 independent variants in GWAS meta-analysis and 8 genes in gene-based association analysis significantly associated with AFF. By integrating the PigGTEx resource, we conducted transcriptome-wide association study (TWAS) and colocalization analysis on 34 pig tissues. In TWAS, we detected 18 significant gene-tissue pairs, such as DCAF6 in uterus and CREG1 in blood. In colocalization, we found 111 potential candidate tissue-gene pairs, such as GJD4 and LYPLAL1. We found that the homologous gene, CHST10, might be the potential candidate gene between humans in AFB and pigs in AFF. In conclusion, integrating GWAS meta-analysis and PigGTEx resources is a meaningful way to decipher the genetic architecture of complex traits. We found that DCAF6, CREG1, GJD4, and LYPLAL1 are candidate genes with high reliability for AFF in swine. The comparative analysis showed that CHST10 might play a potentially critical role in AFB/AFF across human and pigs.
{"title":"Integrating meta-analysis of genome-wide association study with Pig Genotype-Tissue Expression resources uncovers the genetic architecture for age at first farrowing in pigs","authors":"Qing Lin, Xueyan Feng, Tingting Li, Xiangchun Pan, Shuqi Diao, Yahui Gao, Xiaolong Yuan, Jiaqi Li, Xiangdong Ding, Zhe Zhang","doi":"10.1002/aro2.62","DOIUrl":"10.1002/aro2.62","url":null,"abstract":"<p>Age at first farrowing (AFF) is a reproductive trait with low heritability and high importance in the pig industry. To enhance the statistical power of genome-wide association study (GWAS) and further explore the genetic nature of AFF, we first conducted GWAS meta-analysis using three Yorkshire populations, and then integrated the Pig Genotype-Tissue Expression (PigGTEx) resources to interpret their potential regulatory mechanism. Additionally, we compared the AFF in pig with the age at first birth (AFB) of human using GWAS summary statistics. We detected 18 independent variants in GWAS meta-analysis and 8 genes in gene-based association analysis significantly associated with AFF. By integrating the PigGTEx resource, we conducted transcriptome-wide association study (TWAS) and colocalization analysis on 34 pig tissues. In TWAS, we detected 18 significant gene-tissue pairs, such as <i>DCAF6</i> in uterus and <i>CREG1</i> in blood. In colocalization, we found 111 potential candidate tissue-gene pairs, such as <i>GJD4</i> and <i>LYPLAL1</i>. We found that the homologous gene, <i>CHST10</i>, might be the potential candidate gene between humans in AFB and pigs in AFF. In conclusion, integrating GWAS meta-analysis and PigGTEx resources is a meaningful way to decipher the genetic architecture of complex traits. We found that <i>DCAF6</i>, <i>CREG1, GJD4,</i> and <i>LYPLAL1</i> are candidate genes with high reliability for AFF in swine. The comparative analysis showed that <i>CHST10</i> might play a potentially critical role in AFB/AFF across human and pigs.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.62","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140987652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent decades, the global demand for food has increased rapidly due to population growth and diminishing cultivated land. Aquaculture production has experienced rapid growth in the past 40 years and is recognized as one of the key means of addressing global food demand. However, inland aquaculture faces challenges such as water scarcity and ecological damage, leading to attention increasingly turning to the ocean. According to statistics, two-thirds of China's seafood comes from aquaculture. The reason is that China has focused on shifting from traditional fishing to systematic marine agriculture, with the core concept being the “Marine Ranching,” which views the ocean as a vast ecological management farm. The successful implementation of this concept is crucial for ensuring food security. However, the development of “Marine Ranching” requires interdisciplinary collaboration.
The special issue on “Marine Ranching” included articles that reviewed the trajectory of fish farming in Zimbabwe and provided a new perspective on the integration of aquatic pathology and nutrition for disease prevention and control. Briefly, it is well known that disease is one of the most important limiting factors for aquaculture expansion and productivity. Researchers demonstrated that ferroptosis and iron mineralization are both involved in the death and survival of fish challenged with Pseudomonas plecoglossicida. Additionally, they highlighted the importance of hematological parameters, particularly poikilocytosis, in the diagnosis of diseases in aquaculture. Moreover, antibiotics are frequently utilized in aquaculture to prevent and treat diseases. In the content of this issue, the potential adverse effects of inappropriate oxytetracycline use have garnered significant attention. Consequently, there has been a growing emphasis on researching more ecologically sustainable methods, such as the use of Isalo scorpion cytotoxic peptide stimulation to enhance the disease resistance of fish.
In conclusion, this special issue on “Marine Ranching” provided a platform for global interdisciplinary academic sharing. By drawing on these academic studies, we can continuously refine disease prevention and control measures and promote the healthy development of marine aquaculture. Not only that, sharing academic outcomes will undoubtedly bring greater wisdom and strength to establish a scientific, efficient, and sustainable blue granary production system.
{"title":"The development of “Marine Ranching” requires global interdisciplinary collaboration and academic sharing","authors":"Lin Feng, Weidan Jiang, Pei Wu, Hongju Liu","doi":"10.1002/aro2.64","DOIUrl":"10.1002/aro2.64","url":null,"abstract":"<p>In recent decades, the global demand for food has increased rapidly due to population growth and diminishing cultivated land. Aquaculture production has experienced rapid growth in the past 40 years and is recognized as one of the key means of addressing global food demand. However, inland aquaculture faces challenges such as water scarcity and ecological damage, leading to attention increasingly turning to the ocean. According to statistics, two-thirds of China's seafood comes from aquaculture. The reason is that China has focused on shifting from traditional fishing to systematic marine agriculture, with the core concept being the “Marine Ranching,” which views the ocean as a vast ecological management farm. The successful implementation of this concept is crucial for ensuring food security. However, the development of “Marine Ranching” requires interdisciplinary collaboration.</p><p>The special issue on “Marine Ranching” included articles that reviewed the trajectory of fish farming in Zimbabwe and provided a new perspective on the integration of aquatic pathology and nutrition for disease prevention and control. Briefly, it is well known that disease is one of the most important limiting factors for aquaculture expansion and productivity. Researchers demonstrated that ferroptosis and iron mineralization are both involved in the death and survival of fish challenged with <i>Pseudomonas plecoglossicida</i>. Additionally, they highlighted the importance of hematological parameters, particularly poikilocytosis, in the diagnosis of diseases in aquaculture. Moreover, antibiotics are frequently utilized in aquaculture to prevent and treat diseases. In the content of this issue, the potential adverse effects of inappropriate oxytetracycline use have garnered significant attention. Consequently, there has been a growing emphasis on researching more ecologically sustainable methods, such as the use of Isalo scorpion cytotoxic peptide stimulation to enhance the disease resistance of fish.</p><p>In conclusion, this special issue on “Marine Ranching” provided a platform for global interdisciplinary academic sharing. By drawing on these academic studies, we can continuously refine disease prevention and control measures and promote the healthy development of marine aquaculture. Not only that, sharing academic outcomes will undoubtedly bring greater wisdom and strength to establish a scientific, efficient, and sustainable blue granary production system.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.64","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140991422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joyce D’Silva, Hillary Dalton, Natasha K. Boyland, Jacky Turner
There is an increasing amount of scientific research into animal sentience. Many scientists are studying the cognitive, emotional, and communicative capacities of a range of animals. The results of this research have led to a number of legal recognitions of the sentience of a range of animals. In 1997, the European Union (EU) gave legal recognition to the sentience of animals and updated and elevated this recognition in the Treaty of Lisbon. Other countries and states as well as the World Organization for Animal Health (WOAH, formerly OIE) have followed it. Scientists are increasingly acknowledging that sentience and emotion have arisen in a wide range of species. Research now emphasizes that there is an extraordinary variation in how different animal species (such as mammals, birds, fish, or insects) perceive the world and their environment. This paper looks at the sentience of the main farmed land and aquatic animals and the implications of this for how such animals are bred and housed. The paper concludes that intensive farming systems deprive animals of opportunities for positive emotions, such as play, exploration, social interaction, and feeding to satiation, and stops them from satisfying naturally motivated behaviors. To truly respect animal sentience, production systems should be designed with the animal's characteristics and needs in mind. The authors conclude that regenerative, agroecological, or organic farming systems better protect and respect the sentience of animals leading to less suffering and more opportunities for positive experiences.
{"title":"Animal sentience: The science and its implications, with particular reference to farmed animals","authors":"Joyce D’Silva, Hillary Dalton, Natasha K. Boyland, Jacky Turner","doi":"10.1002/aro2.65","DOIUrl":"10.1002/aro2.65","url":null,"abstract":"<p>There is an increasing amount of scientific research into animal sentience. Many scientists are studying the cognitive, emotional, and communicative capacities of a range of animals. The results of this research have led to a number of legal recognitions of the sentience of a range of animals. In 1997, the European Union (EU) gave legal recognition to the sentience of animals and updated and elevated this recognition in the Treaty of Lisbon. Other countries and states as well as the World Organization for Animal Health (WOAH, formerly OIE) have followed it. Scientists are increasingly acknowledging that sentience and emotion have arisen in a wide range of species. Research now emphasizes that there is an extraordinary variation in how different animal species (such as mammals, birds, fish, or insects) perceive the world and their environment. This paper looks at the sentience of the main farmed land and aquatic animals and the implications of this for how such animals are bred and housed. The paper concludes that intensive farming systems deprive animals of opportunities for positive emotions, such as play, exploration, social interaction, and feeding to satiation, and stops them from satisfying naturally motivated behaviors. To truly respect animal sentience, production systems should be designed with the animal's characteristics and needs in mind. The authors conclude that regenerative, agroecological, or organic farming systems better protect and respect the sentience of animals leading to less suffering and more opportunities for positive experiences.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.65","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140993681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanlin He, Qiyu Hu, Xiaoqiu Zhou, Pei Wu, Weidan Jiang, Yang Liu, Xiaowan Jin, Hongmei Ren, Lin Feng
To investigate the impact of Isalo scorpion cytotoxic peptide (IsCT) on the immune function of immune organ (head kidney, spleen, and skin) of grass carp (Ctenopharyngodon idella), 540 fish (136.88 ± 0.72 g) were supplied with a different amount of IsCT (0, 0.6, 1.2, 1.8, 2.4, and 3.0 mg/kg diet) through a period of 60 days. Afterward, 24 fish were randomly selected from each group and were inoculated with Aeromonas hydrophila for a period of 6 days. Our findings suggested that appropriate IsCT complementation: (1) attenuated skin morbidity and histopathological structural changes in the head kidney and spleen (p < 0.05), which ensured the structural integrity of the immune organs; (2) increased the activity and expression of immune substances (p < 0.05), which in turn increased the function of the immune organs, promoting immune responses; (3) through the regulation of the Janus kinase/signal transducers and activators of transcription (JAKs/STATs) signaling pathway, the mRNA expression of anti-inflammatory cytokines increased and the mRNA expression of pro-inflammatory cytokines decreased, which in turn increased the function of the immune organs, reducing the inflammatory response (p < 0.05). However, the addition of IsCT did not affect the expression of IL-12p35, STAT2, and STAT3a in the immune organ. Ultimately, this study provided evidence that IsCT enhanced immune function via the JAKs/STATs signaling pathway in the immune organ in grass carp after challenged with Aeromonas hydrophila.
{"title":"Isalo scorpion cytotoxic peptide-strengthened immune function through the JAKs/STATs signaling pathway of the immune organ of grass carp (Ctenopharyngodon idella) challenged with Aeromonas hydrophila","authors":"Yuanlin He, Qiyu Hu, Xiaoqiu Zhou, Pei Wu, Weidan Jiang, Yang Liu, Xiaowan Jin, Hongmei Ren, Lin Feng","doi":"10.1002/aro2.59","DOIUrl":"10.1002/aro2.59","url":null,"abstract":"<p>To investigate the impact of Isalo scorpion cytotoxic peptide (IsCT) on the immune function of immune organ (head kidney, spleen, and skin) of grass carp (<i>Ctenopharyngodon idella</i>), 540 fish (136.88 ± 0.72 g) were supplied with a different amount of IsCT (0, 0.6, 1.2, 1.8, 2.4, and 3.0 mg/kg diet) through a period of 60 days. Afterward, 24 fish were randomly selected from each group and were inoculated with <i>Aeromonas hydrophila</i> for a period of 6 days. Our findings suggested that appropriate IsCT complementation: (1) attenuated skin morbidity and histopathological structural changes in the head kidney and spleen (<i>p</i> < 0.05), which ensured the structural integrity of the immune organs; (2) increased the activity and expression of immune substances (<i>p</i> < 0.05), which in turn increased the function of the immune organs, promoting immune responses; (3) through the regulation of the Janus kinase/signal transducers and activators of transcription (JAKs/STATs) signaling pathway, the mRNA expression of anti-inflammatory cytokines increased and the mRNA expression of pro-inflammatory cytokines decreased, which in turn increased the function of the immune organs, reducing the inflammatory response (<i>p</i> < 0.05). However, the addition of IsCT did not affect the expression of IL-12p35, STAT2, and STAT3a in the immune organ. Ultimately, this study provided evidence that IsCT enhanced immune function via the JAKs/STATs signaling pathway in the immune organ in grass carp after challenged with <i>Aeromonas hydrophila</i>.</p>","PeriodicalId":100086,"journal":{"name":"Animal Research and One Health","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aro2.59","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140656487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}