The duck (Anas platyrhynchos) is not only a vital farm animal but also an excellent model for genetic dissection of economic traits. The integration of multiomics data provides a powerful approach to elucidate the genetic basis of domestication and phenotype variation. Since its inception in 2014, the Duck 1000 Genomes Project has aimed to uncover the genetic foundation of key economic traits in ducks by combining multiomics data including genomic, transcriptomic, and metabolomic from various natural and segregating populations. This paper summarizes the strategies and achievements of the Duck 1000 Genomes Project, highlighting the reference genome assembly, genome evolution analysis, and the identification of genes and causative mutations responsible for key economic traits in ducks. We also discuss perspectives and potential challenges in functional genomic studies that could further accelerate duck molecular breeding.
Spotted sea bass (Lateolabrax maculatus) is a species of significant economic importance in aquaculture. However, genetic degeneration, such as declining growth performance, has severely impeded industry development, necessitating urgent genetic improvement. Here, we conducted a genome-wide association study (GWAS) and genomic prediction for growth traits using insertion and deletion (InDel) markers, and systematically compared the results with our previous studies using single nucleotide polymorphism (SNP) markers. A total of 97 significant InDels including a 6 bp insertion in an exon region were identified. It is worth noting that only 5 and 1 candidate genes for DY and TS populations were also detected in previous GWAS using SNPs, and numerous novel genes including c4b, fgf4, and dnajb9 were identified as vital candidate genes. Moreover, several novel growth-related procedures, such as the growth and development of the bone and muscle, were also detected. These findings indicated that InDel-based GWAS can provide valuable complement to SNP-based studies. The comparison of genomic predictive performance for total length trait under different marker selection strategies and genomic selection models indicated that GWAS selection strategy exhibits more stable predictive performance compared to the evenly selection strategy. Additionally, support vector machine model demonstrated better predictive accuracy and efficiency than traditional best linear unbiased prediction and Bayes models. Furthermore, the superior predictive performance using InDel markers compared to SNP markers highlighted the potential of InDels to enhance genomic predictive accuracy and efficiency. Our results carry significant implications for dissecting genetic mechanisms and contributing genetic improvement of growth traits in spotted sea bass through genomic resources.
Obesity has reached epidemic proportions in most parts of the world, and it is estimated that 1 billion people globally are trapped in an obesity pandemic, which has seriously compromised human health. Recently, there has been a flood of research into obesity as well as redox and lipid metabolism; however, our understanding of the pathways and specific molecular mechanisms by which obesity-induced oxidative stress affects female reproductive function remains limited. In this review, we discuss how the obesity pandemic has led to lower female fertility. We focus on multiple facets of obesity-mediated reproductive dysfunction, including follicular atresia, oocyte maturation, embryo implantation, reproductive aging, and discuss therapeutic interventions that have the potential to normalize reproductive function in obese females, such as targeting mitochondrial lipid metabolism and antioxidant pathways.
Circular RNA (circRNA), a stable ring-shaped RNA molecule found in eukaryotic cells, plays significant roles in biological regulation, particularly by interfering with transcription factor binding or enhancing gene expression. Using transcriptomic sequencing, we identified differentially expressed circRNAs in bovine muscle at various time points. Specifically, circDYRK1A was discovered and shown to enhance differentiation while suppressing proliferation of adult myoblasts. Rescue experiments further demonstrated that circDYRK1A regulates the KLF5 gene expression by interacting with miR21-5p, thus exerting its influence at the transcriptional level. This study marks the first identification of circDYRK1A in cattle and elucidates its role in bovine myoblast development through the circDYRK1A-miR21-5p-KLF5 regulatory axis. These findings contribute novel insights into molecular breeding of cattle and advance fundamental research on beef cattle breeding and muscle development.
Zoonotic diseases remain a persistent threat to global public health. Many major zoonotic pathogens exhibit seasonal patterns associated with climatic variations. Quantifying the impacts of environmental variables such as temperature and humidity on disease transmission dynamics is critical for improving prediction and control measures. This review synthesizes current evidence on the relationships between temperature and humidity and major zoonotic diseases, including malaria, dengue, rabies, anisakiasis, and influenza. Overall, this review highlighted some overarching themes across the different zoonotic diseases examined. Higher temperatures within suitable ranges were generally associated with increased transmission risks, while excessively high or low temperatures had adverse effects. Humidity exhibited complex nonlinear relationships, facilitating transmission in certain temperature zones but inhibiting it in others. Heavy rainfall and high humidity were linked to vector-borne disease outbreaks such as malaria by enabling vector breeding. However, reduced incidence of some diseases like dengue fever was observed with high rainfall. To address existing knowledge gaps, future research efforts should prioritize several key areas: enhancing data quality through robust surveillance and the integration of high-resolution microclimate data; standardizing analytical frameworks and leveraging advanced methodologies such as machine learning; conducting mechanistic studies to elucidate pathogen, vector, and host responses to climatic stimuli; adopting interdisciplinary approaches to account for interacting drivers; and projecting disease impacts under various climate change scenarios to inform adaptation strategies. Investing in these research priorities can propel the development of evidence-based climate-aware disease prediction and control measures, ultimately safeguarding public health more effectively.
The aim of this study was to investigate the mechanism of iron homeostasis and the ferroptosis pathway for yolk sac atrophy during late embryogenesis. To study the mechanism of yolk sac atrophy, 100 eggs were used. Further, 500 eggs were randomly divided into five treatments and in ovo feeding with different iron sources, such as FeSO4, ferrous glycinate (Fe-Gly), or deferoxamine (DFO), to study the effects of free iron content on hatching quality and embryonic development. The results showed that total iron content of yolk decreased, but yolk sac increased from embryonic(E)13 to E19 (p < 0.05). Comparison of gene expression of iron transport systems showed that free iron accumulation and dysfunction occurred in the yolk sac. Yolk sac metabolites at E19 compared to E13 were more enriched in histidine and sulfur pathways, suppressing glutathione synthesis and resulting in oxidative stress damage in the yolk sac. Combined analysis of differential metabolites and gene expression in ferroptosis pathway at E13 and E19 revealed the activation of the yolk sac during late embryogenesis was probably through up-regulation of ACSL4 expression and down-regulation of GPX4 expression. Furthermore, in ovo feeding FeSO4 shortened the incubation time compared to CON, while Fe-Gly or DFO delayed the hatching peak and increased hatching weight with less residual yolk. Collectively, it can be concluded that yolk sac atrophy during late embryogenesis may be mediated by iron disorders and provides a novel insight to modulate yolk sac nutrition, and hatching efficiency in chickens.