Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge
{"title":"利用自旋-VCSEL 进行储层计算时标和数据注入方案的影响","authors":"Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge","doi":"10.1038/s42005-024-01858-5","DOIUrl":null,"url":null,"abstract":"Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01858-5.pdf","citationCount":"0","resultStr":"{\"title\":\"The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs\",\"authors\":\"Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge\",\"doi\":\"10.1038/s42005-024-01858-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-12\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01858-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01858-5\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01858-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs
Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.