Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini
{"title":"相干性在多体量子存储计算中的作用","authors":"Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini","doi":"10.1038/s42005-024-01859-4","DOIUrl":null,"url":null,"abstract":"Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01859-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Role of coherence in many-body Quantum Reservoir Computing\",\"authors\":\"Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini\",\"doi\":\"10.1038/s42005-024-01859-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-9\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01859-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01859-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01859-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Role of coherence in many-body Quantum Reservoir Computing
Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.