伽利略卫星动力作用的临界核心尺寸

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-18 DOI:10.1029/2024gl110680
K. T. Trinh, C. J. Bierson, J. G. O’Rourke
{"title":"伽利略卫星动力作用的临界核心尺寸","authors":"K. T. Trinh, C. J. Bierson, J. G. O’Rourke","doi":"10.1029/2024gl110680","DOIUrl":null,"url":null,"abstract":"Ganymede is the only known moon with an active dynamo. No mission has discovered intrinsic magnetism at the other Galilean satellites: Io, Europa, and Callisto. A dynamo requires a large magnetic Reynolds number, which in turn demands, for these moons, a large metallic core that is cooling fast enough for convection. Here we quantify these requirements to construct a regime diagram for the Galilean satellites. We compute the internal heat fluxes that would sustain a dynamo over the wide ranges of plausible radii for their metallic cores. Below a critical radius, no plausible heat flux will sustain a dynamo. Europa likely sits on the opposite side of this limit than Ganymede and Io. We predict that future missions may confirm a small (or absent) core, meaning that Europa could not sustain a dynamo even if its interior were cooling as quickly as Ganymede's core.","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Critical Core Size for Dynamo Action at the Galilean Satellites\",\"authors\":\"K. T. Trinh, C. J. Bierson, J. G. O’Rourke\",\"doi\":\"10.1029/2024gl110680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ganymede is the only known moon with an active dynamo. No mission has discovered intrinsic magnetism at the other Galilean satellites: Io, Europa, and Callisto. A dynamo requires a large magnetic Reynolds number, which in turn demands, for these moons, a large metallic core that is cooling fast enough for convection. Here we quantify these requirements to construct a regime diagram for the Galilean satellites. We compute the internal heat fluxes that would sustain a dynamo over the wide ranges of plausible radii for their metallic cores. Below a critical radius, no plausible heat flux will sustain a dynamo. Europa likely sits on the opposite side of this limit than Ganymede and Io. We predict that future missions may confirm a small (or absent) core, meaning that Europa could not sustain a dynamo even if its interior were cooling as quickly as Ganymede's core.\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2024gl110680\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2024gl110680","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Critical Core Size for Dynamo Action at the Galilean Satellites
Ganymede is the only known moon with an active dynamo. No mission has discovered intrinsic magnetism at the other Galilean satellites: Io, Europa, and Callisto. A dynamo requires a large magnetic Reynolds number, which in turn demands, for these moons, a large metallic core that is cooling fast enough for convection. Here we quantify these requirements to construct a regime diagram for the Galilean satellites. We compute the internal heat fluxes that would sustain a dynamo over the wide ranges of plausible radii for their metallic cores. Below a critical radius, no plausible heat flux will sustain a dynamo. Europa likely sits on the opposite side of this limit than Ganymede and Io. We predict that future missions may confirm a small (or absent) core, meaning that Europa could not sustain a dynamo even if its interior were cooling as quickly as Ganymede's core.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Lunar Nearside-Farside Mare Basalt Asymmetry: The Combined Role of Global Crustal Thickness Variations and South Pole-Aitken (SPA) Basin-Induced Lithospheric Thickening Survey of Whistler-Mode Wave Amplitudes and Frequency Spectra in Jupiter's Magnetosphere Seasonal Upwelling Forecasts in the California Current System A Critical Core Size for Dynamo Action at the Galilean Satellites Hydroacoustic Observations Reveal Drivers of Mixing and Salinization of a Karst Subterranean Estuary During Intense Precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1