以天然齐墩果酸为基础的油包水高内相和多重皮克林乳液作为现实脂肪类似物的结构特征、稳定性评价和口腔摩擦学研究

IF 8.5 1区 农林科学 Q1 CHEMISTRY, APPLIED Food Chemistry Pub Date : 2024-11-18 DOI:10.1016/j.foodchem.2024.142121
Liyang Du, Shanshan Zhou, Yilei Huang, Zong Meng
{"title":"以天然齐墩果酸为基础的油包水高内相和多重皮克林乳液作为现实脂肪类似物的结构特征、稳定性评价和口腔摩擦学研究","authors":"Liyang Du, Shanshan Zhou, Yilei Huang, Zong Meng","doi":"10.1016/j.foodchem.2024.142121","DOIUrl":null,"url":null,"abstract":"Herein, it proved that oleanolic acid (OA) could self-assemble into particles in oil, further exhibiting great potential in creating Pickering water-in-oil (W/O) high internal phase emulsions (HIPEs) with desirable fat-like attributes. W/O HIPE with a water content of 85 wt% could be stabilized by 3 wt% OA, their fat-like performance could be optimized by modulating the filling density of water droplets and interfacial coverage. The stabilization included particle-coated, particle and droplet co-coated, and droplet-coated interfaces depending on the OA amount. HIPEs with excellent tolerance to high-temperature and freeze-thaw treatment could be achieved. Moreover, dual-interface Pickering-stabilization water-in-oil-in-water (W/O/W) emulsions with a fat-like texture were fabricated via a one-step homogenization stabilized with OA particles and microgels. Importantly, OA-based W/O and W/O/W emulsion gels possessed smooth oral sensation and similar tribology behaviors to milk fat. This work is expected to provide a “clean-label” route to develop multiphase fat analogues involved in natural materials.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues\",\"authors\":\"Liyang Du, Shanshan Zhou, Yilei Huang, Zong Meng\",\"doi\":\"10.1016/j.foodchem.2024.142121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein, it proved that oleanolic acid (OA) could self-assemble into particles in oil, further exhibiting great potential in creating Pickering water-in-oil (W/O) high internal phase emulsions (HIPEs) with desirable fat-like attributes. W/O HIPE with a water content of 85 wt% could be stabilized by 3 wt% OA, their fat-like performance could be optimized by modulating the filling density of water droplets and interfacial coverage. The stabilization included particle-coated, particle and droplet co-coated, and droplet-coated interfaces depending on the OA amount. HIPEs with excellent tolerance to high-temperature and freeze-thaw treatment could be achieved. Moreover, dual-interface Pickering-stabilization water-in-oil-in-water (W/O/W) emulsions with a fat-like texture were fabricated via a one-step homogenization stabilized with OA particles and microgels. Importantly, OA-based W/O and W/O/W emulsion gels possessed smooth oral sensation and similar tribology behaviors to milk fat. This work is expected to provide a “clean-label” route to develop multiphase fat analogues involved in natural materials.\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142121\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142121","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues
Herein, it proved that oleanolic acid (OA) could self-assemble into particles in oil, further exhibiting great potential in creating Pickering water-in-oil (W/O) high internal phase emulsions (HIPEs) with desirable fat-like attributes. W/O HIPE with a water content of 85 wt% could be stabilized by 3 wt% OA, their fat-like performance could be optimized by modulating the filling density of water droplets and interfacial coverage. The stabilization included particle-coated, particle and droplet co-coated, and droplet-coated interfaces depending on the OA amount. HIPEs with excellent tolerance to high-temperature and freeze-thaw treatment could be achieved. Moreover, dual-interface Pickering-stabilization water-in-oil-in-water (W/O/W) emulsions with a fat-like texture were fabricated via a one-step homogenization stabilized with OA particles and microgels. Importantly, OA-based W/O and W/O/W emulsion gels possessed smooth oral sensation and similar tribology behaviors to milk fat. This work is expected to provide a “clean-label” route to develop multiphase fat analogues involved in natural materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
期刊最新文献
Biodegradable antibacterial food packaging based on carboxymethyl cellulose from sugarcane bagasse/cassava starch/chitosan/gingerol extract stabilized silver nanoparticles (Gin-AgNPs) and vanillin as cross-linking agent Investigation on the structure characteristics, stability evaluation, and oral tribology of natural oleanolic acid-based water-in-oil high internal phase and multiple Pickering emulsions as realistic fat analogues Season-dependent variation in the contents of glucosinolates and S-methyl-L-cysteine sulfoxide and their hydrolysis in Brassica oleracea Development of a time-resolved laser-induced fluorescence fingerprinting method for detecting low-level adulteration in extra virgin olive oil Novel solid-phase extraction promotes simultaneous colloidal gold immunochromatographic assay of malachite green, leuco-malachite green, chloramphenicol, and semi-carbazone metabolites in aquatic products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1