{"title":"茶花 \"红楼1号 \"中果与红色素相关的聚合原花青素代谢分析1'中果","authors":"Boyong Liao, Runsheng Huang, Weimeng Li, Huajie Chen, Haoye Shen, Hongjian Shen, Yiting Su, Min Wang, Weili Lai, Yongquan Li, Bipei Zhang","doi":"10.1016/j.foodchem.2024.142099","DOIUrl":null,"url":null,"abstract":"Red mesocarp, characterized as a unique pigment trait of newly identified <em>Camellia drupifera</em> cv. ‘Hongrou No.1’(‘HR’), is believed to act as the plant's protective shield against diverse adversities. Comprehensive metabolic profiling revealed that the ectopic deposition of polymeric insoluble proanthocyanidins (PAs) in cell walls is responsible for the “red” pigmentation of ‘HR’ mesocarps. Furthermore, structural equation modeling and variation partitioning analysis demonstrated that a molybdenum-dependent aldehyde oxidase, encoded by CdGLOX1, was induced in ‘HR’ mesocarps and deemed to be a dominant determinant of polymeric insoluble PA accumulation through the putative oxidative condensation of PA subunits. This study provides a background for an in-depth understanding of the mechanisms of unperceived pigmentation in fruits.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"32 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metabolic analysis of polymeric proanthocyanidins related to red pigmentation in Camellia drupifera cv. ‘Hongrou no. 1’ mesocarps\",\"authors\":\"Boyong Liao, Runsheng Huang, Weimeng Li, Huajie Chen, Haoye Shen, Hongjian Shen, Yiting Su, Min Wang, Weili Lai, Yongquan Li, Bipei Zhang\",\"doi\":\"10.1016/j.foodchem.2024.142099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Red mesocarp, characterized as a unique pigment trait of newly identified <em>Camellia drupifera</em> cv. ‘Hongrou No.1’(‘HR’), is believed to act as the plant's protective shield against diverse adversities. Comprehensive metabolic profiling revealed that the ectopic deposition of polymeric insoluble proanthocyanidins (PAs) in cell walls is responsible for the “red” pigmentation of ‘HR’ mesocarps. Furthermore, structural equation modeling and variation partitioning analysis demonstrated that a molybdenum-dependent aldehyde oxidase, encoded by CdGLOX1, was induced in ‘HR’ mesocarps and deemed to be a dominant determinant of polymeric insoluble PA accumulation through the putative oxidative condensation of PA subunits. This study provides a background for an in-depth understanding of the mechanisms of unperceived pigmentation in fruits.\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.foodchem.2024.142099\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142099","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
红色中果皮是新发现的茶花品种'红楼1号'('HR')的独特色素特征,被认为是植物抵御各种逆境的保护屏障。综合代谢分析表明,细胞壁中异位沉积的高分子不溶性原花青素(PAs)是造成'HR'中果皮 "红色 "色素沉着的原因。此外,结构方程建模和变异分配分析表明,由 CdGLOX1 编码的钼依赖性醛氧化酶在 "HR "中果皮中被诱导,并被认为是通过 PA 亚基的推定氧化缩合而决定高分子不溶性 PA 累积的主导因素。这项研究为深入了解水果中未感知色素沉着的机理提供了背景资料。
Metabolic analysis of polymeric proanthocyanidins related to red pigmentation in Camellia drupifera cv. ‘Hongrou no. 1’ mesocarps
Red mesocarp, characterized as a unique pigment trait of newly identified Camellia drupifera cv. ‘Hongrou No.1’(‘HR’), is believed to act as the plant's protective shield against diverse adversities. Comprehensive metabolic profiling revealed that the ectopic deposition of polymeric insoluble proanthocyanidins (PAs) in cell walls is responsible for the “red” pigmentation of ‘HR’ mesocarps. Furthermore, structural equation modeling and variation partitioning analysis demonstrated that a molybdenum-dependent aldehyde oxidase, encoded by CdGLOX1, was induced in ‘HR’ mesocarps and deemed to be a dominant determinant of polymeric insoluble PA accumulation through the putative oxidative condensation of PA subunits. This study provides a background for an in-depth understanding of the mechanisms of unperceived pigmentation in fruits.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.