使用晶格氧在 VOx/MgO-γAl2O3 上氧化裂解正己烷制取轻烯烃:性能评估和机器学习建模

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2024-11-18 DOI:10.1021/acs.iecr.4c03363
Hussein K. Amusa, Sagir Adamu, Akolade Idris Bakare, Tajudeen A. Oyehan, Abeer S. Arjah, Saad A. Al-Bogami, Sameer Al-Ghamdi, Shaikh A. Razzak, Mohammad M. Hossain
{"title":"使用晶格氧在 VOx/MgO-γAl2O3 上氧化裂解正己烷制取轻烯烃:性能评估和机器学习建模","authors":"Hussein K. Amusa, Sagir Adamu, Akolade Idris Bakare, Tajudeen A. Oyehan, Abeer S. Arjah, Saad A. Al-Bogami, Sameer Al-Ghamdi, Shaikh A. Razzak, Mohammad M. Hossain","doi":"10.1021/acs.iecr.4c03363","DOIUrl":null,"url":null,"abstract":"This study investigates VO<sub><i>x</i></sub>/MgO-γAl<sub>2</sub>O<sub>3</sub> in the oxidative cracking of<i>n</i>-hexane to produce light olefins in the absence of gas-phase oxygen. The catalysts were prepared with varying mass ratios of MgO/γAl<sub>2</sub>O<sub>3</sub>(1:2, 1:1, and 2:1), while the VO<sub><i>x</i></sub> loading was maintained at 10 wt %. Among the synthesized catalysts, VO<sub><i>x</i></sub>/MgO-γAl<sub>2</sub>O<sub>3</sub> 1:1 showed superior catalytic activity, with 89.1% <i>n</i>-hexane conversion and 92.6% light olefin selectivity. Introducing an appropriate amount of MgO enhanced the dispersion of VO<sub><i>x</i></sub> active species, balanced the acidity, and suppressed the oxidation of hydrocarbons. Additionally, a machine learning model was developed to predict oxidative cracking products’ yields. The model, based on 44 data points from this study and literature, predicted <i>n</i>-hexane conversion, olefin yield, carbon oxide yield, methane yield, and paraffin yield using catalyst formulations, temperature, and time as inputs. The model showed a high correlation (<i>R</i><sup>2</sup>) of 0.99 and RMSE values between 1.6 and 8.5, highlighting its strong predictive capability.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxidative Cracking of n-Hexane to Light Olefins over VOx/MgO-γAl2O3 Using Lattice Oxygen: Performance Evaluation and Machine Learning Modeling\",\"authors\":\"Hussein K. Amusa, Sagir Adamu, Akolade Idris Bakare, Tajudeen A. Oyehan, Abeer S. Arjah, Saad A. Al-Bogami, Sameer Al-Ghamdi, Shaikh A. Razzak, Mohammad M. Hossain\",\"doi\":\"10.1021/acs.iecr.4c03363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates VO<sub><i>x</i></sub>/MgO-γAl<sub>2</sub>O<sub>3</sub> in the oxidative cracking of<i>n</i>-hexane to produce light olefins in the absence of gas-phase oxygen. The catalysts were prepared with varying mass ratios of MgO/γAl<sub>2</sub>O<sub>3</sub>(1:2, 1:1, and 2:1), while the VO<sub><i>x</i></sub> loading was maintained at 10 wt %. Among the synthesized catalysts, VO<sub><i>x</i></sub>/MgO-γAl<sub>2</sub>O<sub>3</sub> 1:1 showed superior catalytic activity, with 89.1% <i>n</i>-hexane conversion and 92.6% light olefin selectivity. Introducing an appropriate amount of MgO enhanced the dispersion of VO<sub><i>x</i></sub> active species, balanced the acidity, and suppressed the oxidation of hydrocarbons. Additionally, a machine learning model was developed to predict oxidative cracking products’ yields. The model, based on 44 data points from this study and literature, predicted <i>n</i>-hexane conversion, olefin yield, carbon oxide yield, methane yield, and paraffin yield using catalyst formulations, temperature, and time as inputs. The model showed a high correlation (<i>R</i><sup>2</sup>) of 0.99 and RMSE values between 1.6 and 8.5, highlighting its strong predictive capability.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c03363\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03363","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxidative Cracking of n-Hexane to Light Olefins over VOx/MgO-γAl2O3 Using Lattice Oxygen: Performance Evaluation and Machine Learning Modeling
This study investigates VOx/MgO-γAl2O3 in the oxidative cracking ofn-hexane to produce light olefins in the absence of gas-phase oxygen. The catalysts were prepared with varying mass ratios of MgO/γAl2O3(1:2, 1:1, and 2:1), while the VOx loading was maintained at 10 wt %. Among the synthesized catalysts, VOx/MgO-γAl2O3 1:1 showed superior catalytic activity, with 89.1% n-hexane conversion and 92.6% light olefin selectivity. Introducing an appropriate amount of MgO enhanced the dispersion of VOx active species, balanced the acidity, and suppressed the oxidation of hydrocarbons. Additionally, a machine learning model was developed to predict oxidative cracking products’ yields. The model, based on 44 data points from this study and literature, predicted n-hexane conversion, olefin yield, carbon oxide yield, methane yield, and paraffin yield using catalyst formulations, temperature, and time as inputs. The model showed a high correlation (R2) of 0.99 and RMSE values between 1.6 and 8.5, highlighting its strong predictive capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Numerical Study of Pneumatic Conveying of Nonspherical Wet Particles in Pipeline Elbow Oxidative Cracking of n-Hexane to Light Olefins over VOx/MgO-γAl2O3 Using Lattice Oxygen: Performance Evaluation and Machine Learning Modeling Assessment of the Recovery of Erythritol Using Boronic Acid Polymers Microenvironment Regulation, Promoting CO2 Conversion to Mono- and Multicarbon Products over Cu-Based Catalysts Design and Development of a 3D Network Hybrid Polymeric System for Enhanced Dielectric Properties through Selective γ-Crystal Growth of Poly(PVDF-CTFE) and Reduced High-Frequency Relaxation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1