{"title":"用于自供电机械健康监测的宽频三电振动传感器","authors":"Juan Cui, Xin Li, Keping Wang, Xiaolong Yan, Yongqiu Zheng, Chenyang Xue","doi":"10.1016/j.nanoen.2024.110481","DOIUrl":null,"url":null,"abstract":"Abnormal vibration is usually a precursor to structural damage and performance degradation industrial equipment and transportation. Vibration detection at critical locations such as electrical motors and bearings within large equipment has emerged as an indispensable method for machinery health monitoring. Current vibration detection instruments mostly need to be powered by cables or batteries, which has application limitations in complex moving equipment and restricted space. In this paper, a disc-like triboelectric nanogenerator (DL-TENG) with a multi-sized honeycomb structure is proposed as an innovative solution for achieving wide band and high precision acceleration detection of the vibration. Multi-diameter polytetrafluoroethylene (PTFE) balls are used as friction materials to achieve the high voltage output of the TENG, providing sufficient energy for the detection circuit. By carefully designing suitable honeycomb structures for PTFE balls of different diameters, the ability to detect broadband vibration signals is obtained. The experimental results demonstrate that DL-TENG with honeycomb structure and multi-size PTFE balls can detect acceleration signals ranging from 10 to 2000 Hz, and the acceleration measurement range can reach 1-11<!-- --> <!-- -->m/s<sup>2</sup> with an acceleration resolution of 0.1<!-- --> <!-- -->m/s<sup>2</sup>. Moreover, DL-TENG can output more than 80<!-- --> <!-- -->V peak-to-peak under vibration conditions of 11<!-- --> <!-- -->m/s<sup>2</sup>. And under vibration conditions of 8<!-- --> <!-- -->m/s<sup>2</sup>, the DL-TENG can fully charge a 100 μF capacitor to 5<!-- --> <!-- -->V in just 100<!-- --> <!-- -->seconds. By equipping a special circuit for DL-TENG, wireless self-powered vibration detection is realized. This study is expected to be applied in the scenario of vibration information collection in complex ring vibration environment and provides a new paradigm for the realization of self-powered vibration sensors.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"64 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wide-frequency triboelectric vibration sensor for self-powered machinery health monitoring\",\"authors\":\"Juan Cui, Xin Li, Keping Wang, Xiaolong Yan, Yongqiu Zheng, Chenyang Xue\",\"doi\":\"10.1016/j.nanoen.2024.110481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abnormal vibration is usually a precursor to structural damage and performance degradation industrial equipment and transportation. Vibration detection at critical locations such as electrical motors and bearings within large equipment has emerged as an indispensable method for machinery health monitoring. Current vibration detection instruments mostly need to be powered by cables or batteries, which has application limitations in complex moving equipment and restricted space. In this paper, a disc-like triboelectric nanogenerator (DL-TENG) with a multi-sized honeycomb structure is proposed as an innovative solution for achieving wide band and high precision acceleration detection of the vibration. Multi-diameter polytetrafluoroethylene (PTFE) balls are used as friction materials to achieve the high voltage output of the TENG, providing sufficient energy for the detection circuit. By carefully designing suitable honeycomb structures for PTFE balls of different diameters, the ability to detect broadband vibration signals is obtained. The experimental results demonstrate that DL-TENG with honeycomb structure and multi-size PTFE balls can detect acceleration signals ranging from 10 to 2000 Hz, and the acceleration measurement range can reach 1-11<!-- --> <!-- -->m/s<sup>2</sup> with an acceleration resolution of 0.1<!-- --> <!-- -->m/s<sup>2</sup>. Moreover, DL-TENG can output more than 80<!-- --> <!-- -->V peak-to-peak under vibration conditions of 11<!-- --> <!-- -->m/s<sup>2</sup>. And under vibration conditions of 8<!-- --> <!-- -->m/s<sup>2</sup>, the DL-TENG can fully charge a 100 μF capacitor to 5<!-- --> <!-- -->V in just 100<!-- --> <!-- -->seconds. By equipping a special circuit for DL-TENG, wireless self-powered vibration detection is realized. This study is expected to be applied in the scenario of vibration information collection in complex ring vibration environment and provides a new paradigm for the realization of self-powered vibration sensors.\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nanoen.2024.110481\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110481","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A wide-frequency triboelectric vibration sensor for self-powered machinery health monitoring
Abnormal vibration is usually a precursor to structural damage and performance degradation industrial equipment and transportation. Vibration detection at critical locations such as electrical motors and bearings within large equipment has emerged as an indispensable method for machinery health monitoring. Current vibration detection instruments mostly need to be powered by cables or batteries, which has application limitations in complex moving equipment and restricted space. In this paper, a disc-like triboelectric nanogenerator (DL-TENG) with a multi-sized honeycomb structure is proposed as an innovative solution for achieving wide band and high precision acceleration detection of the vibration. Multi-diameter polytetrafluoroethylene (PTFE) balls are used as friction materials to achieve the high voltage output of the TENG, providing sufficient energy for the detection circuit. By carefully designing suitable honeycomb structures for PTFE balls of different diameters, the ability to detect broadband vibration signals is obtained. The experimental results demonstrate that DL-TENG with honeycomb structure and multi-size PTFE balls can detect acceleration signals ranging from 10 to 2000 Hz, and the acceleration measurement range can reach 1-11 m/s2 with an acceleration resolution of 0.1 m/s2. Moreover, DL-TENG can output more than 80 V peak-to-peak under vibration conditions of 11 m/s2. And under vibration conditions of 8 m/s2, the DL-TENG can fully charge a 100 μF capacitor to 5 V in just 100 seconds. By equipping a special circuit for DL-TENG, wireless self-powered vibration detection is realized. This study is expected to be applied in the scenario of vibration information collection in complex ring vibration environment and provides a new paradigm for the realization of self-powered vibration sensors.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.