通过揭示 SEI 演化机制重新审视作为磷酸铁锂/石墨电池新型加速老化方法的过放电过程

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Energy Storage Materials Pub Date : 2024-11-18 DOI:10.1016/j.ensm.2024.103916
Shijun Tang, Yuli Liang, Cong Zhong, Yufan Peng, Yonggang Hu, Wenxuan Hu, Yiqing Liao, Jianrong Lin, Xuerui Yang, Huiyan Zhang, Ying Lin, Ke Zhang, Jinding Liang, Xuefeng Wang, Yimin Wei, Zhengliang Gong, Yong Yang
{"title":"通过揭示 SEI 演化机制重新审视作为磷酸铁锂/石墨电池新型加速老化方法的过放电过程","authors":"Shijun Tang, Yuli Liang, Cong Zhong, Yufan Peng, Yonggang Hu, Wenxuan Hu, Yiqing Liao, Jianrong Lin, Xuerui Yang, Huiyan Zhang, Ying Lin, Ke Zhang, Jinding Liang, Xuefeng Wang, Yimin Wei, Zhengliang Gong, Yong Yang","doi":"10.1016/j.ensm.2024.103916","DOIUrl":null,"url":null,"abstract":"The exceptional cycling stability of lithium-ion batteries in electric vehicles and large-scale grid energy storage applications necessitates the use of accelerated aging tests for rapid assessment. Overdischarge stress is an effective approach to accelerate battery aging, whereas its impact on solid electrolyte interphase (SEI) and battery aging performance remains elusive. Herein, the whole picture of SEI evolution under different overdischarge levels was quantitatively illustrated by combining the electrochemical analysis and spectrochemical techniques. Overdischarge leads to the decomposition of the organic components within SEI, such as ROCO<sub>2</sub>Li and CH<sub>3</sub>Li, while the damaged SEI is repaired during the subsequent charging process with its composition and structure reconstructed. Under overdischarge conditions, the SEI undergoes continuous cycles of destruction and repair, which suppresses its growth and evolution to inorganic components, resulting in a thinner and more uneven morphology with higher organic components and a lower Young's modulus. The unique SEI evolution mechanism of overdischarge effectively accelerates the loss of active lithium and exhibits similar thermodynamic degradation modes to normal aging, making overdischarge a potential accelerated aging method. This study provides a deeper understanding of the mechanisms behind accelerated aging in batteries and offers new insights into the evaluation and enhancement of battery performance.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":null,"pages":null},"PeriodicalIF":18.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting the Overdischarge Process as a Novel Accelerated Aging Method for LiFePO4/Graphite Batteries through the Unveiling of SEI Evolution Mechanism\",\"authors\":\"Shijun Tang, Yuli Liang, Cong Zhong, Yufan Peng, Yonggang Hu, Wenxuan Hu, Yiqing Liao, Jianrong Lin, Xuerui Yang, Huiyan Zhang, Ying Lin, Ke Zhang, Jinding Liang, Xuefeng Wang, Yimin Wei, Zhengliang Gong, Yong Yang\",\"doi\":\"10.1016/j.ensm.2024.103916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The exceptional cycling stability of lithium-ion batteries in electric vehicles and large-scale grid energy storage applications necessitates the use of accelerated aging tests for rapid assessment. Overdischarge stress is an effective approach to accelerate battery aging, whereas its impact on solid electrolyte interphase (SEI) and battery aging performance remains elusive. Herein, the whole picture of SEI evolution under different overdischarge levels was quantitatively illustrated by combining the electrochemical analysis and spectrochemical techniques. Overdischarge leads to the decomposition of the organic components within SEI, such as ROCO<sub>2</sub>Li and CH<sub>3</sub>Li, while the damaged SEI is repaired during the subsequent charging process with its composition and structure reconstructed. Under overdischarge conditions, the SEI undergoes continuous cycles of destruction and repair, which suppresses its growth and evolution to inorganic components, resulting in a thinner and more uneven morphology with higher organic components and a lower Young's modulus. The unique SEI evolution mechanism of overdischarge effectively accelerates the loss of active lithium and exhibits similar thermodynamic degradation modes to normal aging, making overdischarge a potential accelerated aging method. This study provides a deeper understanding of the mechanisms behind accelerated aging in batteries and offers new insights into the evaluation and enhancement of battery performance.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103916\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103916","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电动汽车和大规模电网储能应用中的锂离子电池具有超强的循环稳定性,因此有必要使用加速老化试验进行快速评估。过放电应力是加速电池老化的一种有效方法,但它对固态电解质相间层(SEI)和电池老化性能的影响仍然难以捉摸。本文结合电化学分析和光谱化学技术,定量展示了不同过放电水平下 SEI 演变的全貌。过放电导致 SEI 中的有机成分(如 ROCO2Li 和 CH3Li)分解,而受损的 SEI 则在随后的充电过程中得到修复,其成分和结构得以重建。在过放电条件下,SEI 不断经历破坏和修复的循环,从而抑制了其生长和向无机成分的演化,导致其形态更薄、更不均匀,有机成分更高,杨氏模量更低。过放电的独特 SEI 演化机制有效加速了活性锂的损失,并表现出与正常老化相似的热力学降解模式,使过放电成为一种潜在的加速老化方法。这项研究加深了人们对电池加速老化背后机制的理解,并为评估和提高电池性能提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revisiting the Overdischarge Process as a Novel Accelerated Aging Method for LiFePO4/Graphite Batteries through the Unveiling of SEI Evolution Mechanism
The exceptional cycling stability of lithium-ion batteries in electric vehicles and large-scale grid energy storage applications necessitates the use of accelerated aging tests for rapid assessment. Overdischarge stress is an effective approach to accelerate battery aging, whereas its impact on solid electrolyte interphase (SEI) and battery aging performance remains elusive. Herein, the whole picture of SEI evolution under different overdischarge levels was quantitatively illustrated by combining the electrochemical analysis and spectrochemical techniques. Overdischarge leads to the decomposition of the organic components within SEI, such as ROCO2Li and CH3Li, while the damaged SEI is repaired during the subsequent charging process with its composition and structure reconstructed. Under overdischarge conditions, the SEI undergoes continuous cycles of destruction and repair, which suppresses its growth and evolution to inorganic components, resulting in a thinner and more uneven morphology with higher organic components and a lower Young's modulus. The unique SEI evolution mechanism of overdischarge effectively accelerates the loss of active lithium and exhibits similar thermodynamic degradation modes to normal aging, making overdischarge a potential accelerated aging method. This study provides a deeper understanding of the mechanisms behind accelerated aging in batteries and offers new insights into the evaluation and enhancement of battery performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
期刊最新文献
Extreme Environment-Adaptable and Ultralong-Life Energy Storage Enabled by Synergistic Manipulation of Interfacial Environment and Hydrogen Bonding Looking into failure mode identification driven by differential capacity in Ni-rich layered cathodes Revisiting the Overdischarge Process as a Novel Accelerated Aging Method for LiFePO4/Graphite Batteries through the Unveiling of SEI Evolution Mechanism Constructing interfacial molecular layer coupled with Zn2+ transfer/deposition kinetics modulation toward deeply reversible Zn anodes Zincophilic Group-Rich Aminoglycosides for Ultra-Long Life and High-Rate Zinc Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1