Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang
{"title":"非消化性水苏糖与小肠上皮细胞上的膜HSP90β结合以调节外泌体miRNA:一种新的功能和机制","authors":"Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang","doi":"10.1016/j.cmet.2024.10.012","DOIUrl":null,"url":null,"abstract":"Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring <em>Lactobacillus</em> in mice. Thereinto, miR-30a-5p that was downregulated (Log<sub>2</sub>FC < −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of <em>Lactobacillus reuteri</em>. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.","PeriodicalId":9840,"journal":{"name":"Cell metabolism","volume":"10 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism\",\"authors\":\"Ting Li, Yueyue Liu, Tianchi Duan, Chao Guo, Bin Liu, Xiuqiong Fu, Lu Wang, Xiaoyuan Wang, Xinyue Dong, Chennan Wang, Yalong Lu, Yu Wang, Lin Shi, Honglei Tian, Xingbin Yang\",\"doi\":\"10.1016/j.cmet.2024.10.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring <em>Lactobacillus</em> in mice. Thereinto, miR-30a-5p that was downregulated (Log<sub>2</sub>FC < −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of <em>Lactobacillus reuteri</em>. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.\",\"PeriodicalId\":9840,\"journal\":{\"name\":\"Cell metabolism\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell metabolism\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmet.2024.10.012\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cmet.2024.10.012","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Nondigestible stachyose binds membranous HSP90β on small intestinal epithelium to regulate the exosomal miRNAs: A new function and mechanism
Oligosaccharides are conventionally recognized as “passersby” in the small intestine. However, our research has reframed this understanding by uncovering a new function of oligosaccharide stachyose, which binds hydrophobic residues of membranous HSP90β on small intestinal epithelial cells, thus reprograming the exosomal miRNA profile. CRISPR-Cas9-mediated HSP90β knockout abolished the accumulation of stachyose on cell membrane and its regulatory effects on these miRNAs. Notably, stachyose’s regulation on these miRNAs is independent of its prebiotic role, as evidenced by the observation of stachyose-altered fecal miRNAs in pseudo-germ-free mice. These stachyose-altered miRNAs further shaped colonic microbiome, especially harboring Lactobacillus in mice. Thereinto, miR-30a-5p that was downregulated (Log2FC < −2) in both mice and human feces following stachyose treatment could specifically suppress the growth of Lactobacillus reuteri. These findings build a new regulatory axis of stachyose-intestinal miRNAs-gut microbiota and unveil a previously unknown mechanism underlying the direct “talk” of oligosaccharides to intestine epithelium via membranous HSP90β.
期刊介绍:
Cell Metabolism is a top research journal established in 2005 that focuses on publishing original and impactful papers in the field of metabolic research.It covers a wide range of topics including diabetes, obesity, cardiovascular biology, aging and stress responses, circadian biology, and many others.
Cell Metabolism aims to contribute to the advancement of metabolic research by providing a platform for the publication and dissemination of high-quality research and thought-provoking articles.