Tao Sun, Meng Qi, Qing-Xiu Li, Hang-Fei Li, Zhi-Peng Feng, Run-Ze Xu, You Zhou, Yu Wen, Gui-Jun Li, Ye Zhou, Su-Ting Han
{"title":"整合步态识别的感官记忆过程显示系统","authors":"Tao Sun, Meng Qi, Qing-Xiu Li, Hang-Fei Li, Zhi-Peng Feng, Run-Ze Xu, You Zhou, Yu Wen, Gui-Jun Li, Ye Zhou, Su-Ting Han","doi":"10.1002/adfm.202416619","DOIUrl":null,"url":null,"abstract":"Gait is among the most dependable, accurate, and secure methods of biometric identification. However, high power consumption and low computing capability are two major obstacles on wearable sensors-based gait recognition system. In this work, an integrated system is reported combining a triboelectric nanogenerator (TENG), a memristor (Ag/HfO<sub>x</sub>/Pt), and perovskite-based multicolor LEDs (PMCLED) for the visualization and recognition of foot patterns through signal-on-none and multi-wavelength on-device preprocessing. The flexible TENG acts as a sensory receptor, generating voltage based on the duration and intensity of pressure, which in turn promotes voltage-triggered synaptic plasticity in the memristor. The PMCLED, with its threshold switching and multi-wavelength emission characteristics, enables nonlinear filtering and amplification of the synaptic signal from the memristor, resulting in a simplified system design and reduced background noise. Additionally, the effectiveness of on-device preprocessing is validated based on a 5 × 5 array of integrated devices and software-built neural network for foot pattern visualization and recognition. The proposed system is able to recognize the on-device preprocessed images with high accuracy, indicating great potentials in both healthcare monitoring and human-machine interaction.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"13 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of Sensory Memory Process Display System for Gait Recognition\",\"authors\":\"Tao Sun, Meng Qi, Qing-Xiu Li, Hang-Fei Li, Zhi-Peng Feng, Run-Ze Xu, You Zhou, Yu Wen, Gui-Jun Li, Ye Zhou, Su-Ting Han\",\"doi\":\"10.1002/adfm.202416619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gait is among the most dependable, accurate, and secure methods of biometric identification. However, high power consumption and low computing capability are two major obstacles on wearable sensors-based gait recognition system. In this work, an integrated system is reported combining a triboelectric nanogenerator (TENG), a memristor (Ag/HfO<sub>x</sub>/Pt), and perovskite-based multicolor LEDs (PMCLED) for the visualization and recognition of foot patterns through signal-on-none and multi-wavelength on-device preprocessing. The flexible TENG acts as a sensory receptor, generating voltage based on the duration and intensity of pressure, which in turn promotes voltage-triggered synaptic plasticity in the memristor. The PMCLED, with its threshold switching and multi-wavelength emission characteristics, enables nonlinear filtering and amplification of the synaptic signal from the memristor, resulting in a simplified system design and reduced background noise. Additionally, the effectiveness of on-device preprocessing is validated based on a 5 × 5 array of integrated devices and software-built neural network for foot pattern visualization and recognition. The proposed system is able to recognize the on-device preprocessed images with high accuracy, indicating great potentials in both healthcare monitoring and human-machine interaction.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202416619\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416619","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
步态是最可靠、准确和安全的生物识别方法之一。然而,高功耗和低计算能力是基于可穿戴传感器的步态识别系统的两大障碍。在这项工作中,报告了一种集成系统,该系统结合了三电纳米发电机(TENG)、忆阻器(Ag/HfOx/Pt)和基于过氧化物的多色发光二极管(PMCLED),通过无信号和多波长设备预处理实现脚型的可视化和识别。柔性 TENG 可充当感觉受体,根据压力的持续时间和强度产生电压,进而促进忆阻器中电压触发的突触可塑性。PMCLED 具有阈值开关和多波长发射特性,能够对来自忆阻器的突触信号进行非线性过滤和放大,从而简化了系统设计并降低了背景噪声。此外,基于 5 × 5 集成器件阵列和用于脚型可视化和识别的软件内置神经网络,验证了器件上预处理的有效性。所提议的系统能够高精度地识别设备上预处理的图像,这表明该系统在医疗保健监测和人机交互方面具有巨大潜力。
Integration of Sensory Memory Process Display System for Gait Recognition
Gait is among the most dependable, accurate, and secure methods of biometric identification. However, high power consumption and low computing capability are two major obstacles on wearable sensors-based gait recognition system. In this work, an integrated system is reported combining a triboelectric nanogenerator (TENG), a memristor (Ag/HfOx/Pt), and perovskite-based multicolor LEDs (PMCLED) for the visualization and recognition of foot patterns through signal-on-none and multi-wavelength on-device preprocessing. The flexible TENG acts as a sensory receptor, generating voltage based on the duration and intensity of pressure, which in turn promotes voltage-triggered synaptic plasticity in the memristor. The PMCLED, with its threshold switching and multi-wavelength emission characteristics, enables nonlinear filtering and amplification of the synaptic signal from the memristor, resulting in a simplified system design and reduced background noise. Additionally, the effectiveness of on-device preprocessing is validated based on a 5 × 5 array of integrated devices and software-built neural network for foot pattern visualization and recognition. The proposed system is able to recognize the on-device preprocessed images with high accuracy, indicating great potentials in both healthcare monitoring and human-machine interaction.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.