Xiaobing Wang, Xingliang Song, Xiaoxue Jiang, An Jin, Dong Li, Junfeng Gu, Lu Wang
{"title":"用 MCDI 增强 PBA/AC 电极的脱盐和再生性能研究","authors":"Xiaobing Wang, Xingliang Song, Xiaoxue Jiang, An Jin, Dong Li, Junfeng Gu, Lu Wang","doi":"10.1002/ceat.202300531","DOIUrl":null,"url":null,"abstract":"<p>The research focuses on desalting and regenerating wastewater using membrane capacitive deionization (MCDI) systems with Prussian blue analog and activated carbon electrodes in batch experiments. The experimental results show that the optimized operational parameters for achieving superior deionization regeneration performance in membrane capacitors comprise a voltage magnitude of −1.6 V, a desorption flow rate of 30 mL min<sup>−1</sup>, and an electrode regeneration duration of 25 min. The MCDI system achieves a desorption amount of 45.87 mg g<sup>−1</sup>, a remarkable regeneration rate of 99.23 % under the optimized operating conditions. The MCDI system demonstrates a desorption amount and regeneration rate that are 22.56 mg g<sup>−1</sup> and 17.47 % higher, respectively, compared to the traditional capacitive deionization system.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":"47 12","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the Desalination and Regeneration Performance of PBA/AC Electrode Enhanced by MCDI\",\"authors\":\"Xiaobing Wang, Xingliang Song, Xiaoxue Jiang, An Jin, Dong Li, Junfeng Gu, Lu Wang\",\"doi\":\"10.1002/ceat.202300531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The research focuses on desalting and regenerating wastewater using membrane capacitive deionization (MCDI) systems with Prussian blue analog and activated carbon electrodes in batch experiments. The experimental results show that the optimized operational parameters for achieving superior deionization regeneration performance in membrane capacitors comprise a voltage magnitude of −1.6 V, a desorption flow rate of 30 mL min<sup>−1</sup>, and an electrode regeneration duration of 25 min. The MCDI system achieves a desorption amount of 45.87 mg g<sup>−1</sup>, a remarkable regeneration rate of 99.23 % under the optimized operating conditions. The MCDI system demonstrates a desorption amount and regeneration rate that are 22.56 mg g<sup>−1</sup> and 17.47 % higher, respectively, compared to the traditional capacitive deionization system.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":\"47 12\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300531\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300531","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Study on the Desalination and Regeneration Performance of PBA/AC Electrode Enhanced by MCDI
The research focuses on desalting and regenerating wastewater using membrane capacitive deionization (MCDI) systems with Prussian blue analog and activated carbon electrodes in batch experiments. The experimental results show that the optimized operational parameters for achieving superior deionization regeneration performance in membrane capacitors comprise a voltage magnitude of −1.6 V, a desorption flow rate of 30 mL min−1, and an electrode regeneration duration of 25 min. The MCDI system achieves a desorption amount of 45.87 mg g−1, a remarkable regeneration rate of 99.23 % under the optimized operating conditions. The MCDI system demonstrates a desorption amount and regeneration rate that are 22.56 mg g−1 and 17.47 % higher, respectively, compared to the traditional capacitive deionization system.
期刊介绍:
This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering.
Chemical Engineering & Technology is:
Competent with contributions written and refereed by outstanding professionals from around the world.
Essential because it is an international forum for the exchange of ideas and experiences.
Topical because its articles treat the very latest developments in the field.