Morteza Mohammadzaheri, Reza Tafreshi, Mohsen Bazghaleh, Steven Grainger, Mohammad Khorasani
{"title":"压电管驱动段的感应电压及其在纳米定位中的应用评估","authors":"Morteza Mohammadzaheri, Reza Tafreshi, Mohsen Bazghaleh, Steven Grainger, Mohammad Khorasani","doi":"10.1049/smt2.12209","DOIUrl":null,"url":null,"abstract":"<p>A piezoelectric tube actuator has a number of segments or electrodes. The induced voltage and the piezoelectric voltage, two easy-to-measure electrical signals in piezoelectric tubes, have been used in position estimation of these actuators since 2006 and 1982. However, since introduction, the induced voltage has never been compared with the piezoelectric voltage for piezoelectric tubes’ position estimation. In addition, only linear models have been used to present the relationship between the induced voltage and the position of piezoelectric tubes. In other words, in the literature, it has been practically assumed that (1) the relationship between the induced voltage and the position is linear, and (2) the induced voltage can estimate the position more accurately compared to the piezoelectric voltage. This article assesses and nullifies both these assumptions. In this research, with the use of the experimental data, both aforementioned voltage signals were mapped into the position through linear and nonlinear models. It was shown that the position can be estimated less accurately with the induced voltage compared to the piezoelectric voltage, and the relationship of the position with the induced voltage presents higher and non-negligible nonlinearity compared to the one with the piezoelectric voltage.</p>","PeriodicalId":54999,"journal":{"name":"Iet Science Measurement & Technology","volume":"18 9","pages":"495-502"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12209","citationCount":"0","resultStr":"{\"title\":\"Induced voltage in piezoelectric tube driven segments and their use in nanopositioning, an assessment\",\"authors\":\"Morteza Mohammadzaheri, Reza Tafreshi, Mohsen Bazghaleh, Steven Grainger, Mohammad Khorasani\",\"doi\":\"10.1049/smt2.12209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A piezoelectric tube actuator has a number of segments or electrodes. The induced voltage and the piezoelectric voltage, two easy-to-measure electrical signals in piezoelectric tubes, have been used in position estimation of these actuators since 2006 and 1982. However, since introduction, the induced voltage has never been compared with the piezoelectric voltage for piezoelectric tubes’ position estimation. In addition, only linear models have been used to present the relationship between the induced voltage and the position of piezoelectric tubes. In other words, in the literature, it has been practically assumed that (1) the relationship between the induced voltage and the position is linear, and (2) the induced voltage can estimate the position more accurately compared to the piezoelectric voltage. This article assesses and nullifies both these assumptions. In this research, with the use of the experimental data, both aforementioned voltage signals were mapped into the position through linear and nonlinear models. It was shown that the position can be estimated less accurately with the induced voltage compared to the piezoelectric voltage, and the relationship of the position with the induced voltage presents higher and non-negligible nonlinearity compared to the one with the piezoelectric voltage.</p>\",\"PeriodicalId\":54999,\"journal\":{\"name\":\"Iet Science Measurement & Technology\",\"volume\":\"18 9\",\"pages\":\"495-502\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/smt2.12209\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Science Measurement & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12209\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Science Measurement & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/smt2.12209","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Induced voltage in piezoelectric tube driven segments and their use in nanopositioning, an assessment
A piezoelectric tube actuator has a number of segments or electrodes. The induced voltage and the piezoelectric voltage, two easy-to-measure electrical signals in piezoelectric tubes, have been used in position estimation of these actuators since 2006 and 1982. However, since introduction, the induced voltage has never been compared with the piezoelectric voltage for piezoelectric tubes’ position estimation. In addition, only linear models have been used to present the relationship between the induced voltage and the position of piezoelectric tubes. In other words, in the literature, it has been practically assumed that (1) the relationship between the induced voltage and the position is linear, and (2) the induced voltage can estimate the position more accurately compared to the piezoelectric voltage. This article assesses and nullifies both these assumptions. In this research, with the use of the experimental data, both aforementioned voltage signals were mapped into the position through linear and nonlinear models. It was shown that the position can be estimated less accurately with the induced voltage compared to the piezoelectric voltage, and the relationship of the position with the induced voltage presents higher and non-negligible nonlinearity compared to the one with the piezoelectric voltage.
期刊介绍:
IET Science, Measurement & Technology publishes papers in science, engineering and technology underpinning electronic and electrical engineering, nanotechnology and medical instrumentation.The emphasis of the journal is on theory, simulation methodologies and measurement techniques.
The major themes of the journal are:
- electromagnetism including electromagnetic theory, computational electromagnetics and EMC
- properties and applications of dielectric, magnetic, magneto-optic, piezoelectric materials down to the nanometre scale
- measurement and instrumentation including sensors, actuators, medical instrumentation, fundamentals of measurement including measurement standards, uncertainty, dissemination and calibration
Applications are welcome for illustrative purposes but the novelty and originality should focus on the proposed new methods.