{"title":"磷酸酶和酸度双响应纳米治疗剂的EGCG深度肿瘤穿透技术用于乳腺癌的联合治疗","authors":"Mengxue Zhou, Chuang Zhou, Huan Geng, Zhiwei Huang, Zhiyuan Lin, Ying Wang, Yin Zhu, Jiang Shi, Junfeng Tan, Li Guo, Yanni Zhao, Yue Zhang, Qunhua Peng, Haijun Yu, Weidong Dai, Haipeng Lv, Zhi Lin","doi":"10.1002/smll.202406245","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2406245"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer.\",\"authors\":\"Mengxue Zhou, Chuang Zhou, Huan Geng, Zhiwei Huang, Zhiyuan Lin, Ying Wang, Yin Zhu, Jiang Shi, Junfeng Tan, Li Guo, Yanni Zhao, Yue Zhang, Qunhua Peng, Haijun Yu, Weidong Dai, Haipeng Lv, Zhi Lin\",\"doi\":\"10.1002/smll.202406245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\" \",\"pages\":\"e2406245\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smll.202406245\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202406245","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
EGCG-enabled Deep Tumor Penetration of Phosphatase and Acidity Dual-responsive Nanotherapeutics for Combinatory Therapy of Breast Cancer.
The presence of dense collagen fibers is a typical characteristic of triple-negative breast cancer (TNBC). Although these fibers hinder drug penetration and reduce treatment efficacy, the depletion of the collagen matrix is associated with tumor metastasis. To address this issue, epigallocatechin-3-gallate (EGCG) is first exploited for disrupting the dense collagenous stroma and alleviate fibrosis by specifically blocking the TGF-β/Smad pathway in fibroblasts and tumor cells when intraperitoneally administrated in TNBC tumor-bearing mice. A methotrexate (MTX)-loaded dual phosphate- and pH-responsive nanodrug (pHA@MOF-Au/MTX) is next engineered by integrating Fe-based metal-organic frameworks and gold nanoparticles for improved chemo/chemodynamic therapy of TNBC. Surface modification with pH (low)-insertion peptide substantially enhanced the binding of the nanodrug to 4T1 cells owing to tumor stroma remodeling by EGCG. High-concentration EGCG inhibited glutathione peroxidase by regulating mitochondrial glutamine metabolism, thus facilitating tumor cell ferroptosis. Furthermore, sequential EGCG and pHA@MOF-Au/MTX treatment showed remarkable anti-tumor effects in a mouse model of TNBC, with a tumor growth inhibition rate of 79.9%, and a pulmonary metastasis rate of 96.8%. Altogether, the combination strategy developed in this study can improve the efficacy of chemo/chemodynamic therapy in TNBC and represents an innovative application of EGCG.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.