{"title":"MOTS-c 通过直接结合和激活 CK2 来调节骨骼肌功能。","authors":"Hiroshi Kumagai, Su-Jeong Kim, Brendan Miller, Hirofumi Zempo, Kumpei Tanisawa, Toshiharu Natsume, Shin Hyung Lee, Junxiang Wan, Naphada Leelaprachakul, Michi Emma Kumagai, Ricardo Ramirez, Hemal H Mehta, Kevin Cao, Tae Jung Oh, James A Wohlschlegel, Jihui Sha, Yuichiro Nishida, Noriyuki Fuku, Shohei Dobashi, Eri Miyamoto-Mikami, Mizuki Takaragawa, Mizuho Fuku, Toshinori Yoshihara, Hisashi Naito, Ryoko Kawakami, Suguru Torii, Taishi Midorikawa, Koichiro Oka, Megumi Hara, Chiharu Iwasaka, Yosuke Yamada, Yasuki Higaki, Keitaro Tanaka, Kelvin Yen, Pinchas Cohen","doi":"10.1016/j.isci.2024.111212","DOIUrl":null,"url":null,"abstract":"<p><p>MOTS-c is a mitochondrial microprotein that improves metabolism. Here, we demonstrate CK2 is a direct and functional target of MOTS-c. MOTS-c directly binds to CK2 and activates it in cell-free systems. MOTS-c administration to mice prevented skeletal muscle atrophy and enhanced muscle glucose uptake, which were blunted by suppressing CK2 activity. Interestingly, the effects of MOTS-c are tissue-specific. Systemically administered MOTS-c binds to CK2 in fat and muscle, yet stimulates CK2 activity in muscle while suppressing it in fat by differentially modifying CK2-interacting proteins. Notably, a naturally occurring MOTS-c variant, K14Q MOTS-c, has reduced binding to CK2 and does not activate it or elicit its effects. Male K14Q MOTS-c carriers exhibited a higher risk of sarcopenia and type 2 diabetes (T2D) in an age- and physical-activity-dependent manner, whereas females had an age-specific reduced risk of T2D. Altogether, these findings provide evidence that CK2 is required for MOTS-c effects.</p>","PeriodicalId":342,"journal":{"name":"iScience","volume":"27 11","pages":"111212"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570452/pdf/","citationCount":"0","resultStr":"{\"title\":\"MOTS-c modulates skeletal muscle function by directly binding and activating CK2.\",\"authors\":\"Hiroshi Kumagai, Su-Jeong Kim, Brendan Miller, Hirofumi Zempo, Kumpei Tanisawa, Toshiharu Natsume, Shin Hyung Lee, Junxiang Wan, Naphada Leelaprachakul, Michi Emma Kumagai, Ricardo Ramirez, Hemal H Mehta, Kevin Cao, Tae Jung Oh, James A Wohlschlegel, Jihui Sha, Yuichiro Nishida, Noriyuki Fuku, Shohei Dobashi, Eri Miyamoto-Mikami, Mizuki Takaragawa, Mizuho Fuku, Toshinori Yoshihara, Hisashi Naito, Ryoko Kawakami, Suguru Torii, Taishi Midorikawa, Koichiro Oka, Megumi Hara, Chiharu Iwasaka, Yosuke Yamada, Yasuki Higaki, Keitaro Tanaka, Kelvin Yen, Pinchas Cohen\",\"doi\":\"10.1016/j.isci.2024.111212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MOTS-c is a mitochondrial microprotein that improves metabolism. Here, we demonstrate CK2 is a direct and functional target of MOTS-c. MOTS-c directly binds to CK2 and activates it in cell-free systems. MOTS-c administration to mice prevented skeletal muscle atrophy and enhanced muscle glucose uptake, which were blunted by suppressing CK2 activity. Interestingly, the effects of MOTS-c are tissue-specific. Systemically administered MOTS-c binds to CK2 in fat and muscle, yet stimulates CK2 activity in muscle while suppressing it in fat by differentially modifying CK2-interacting proteins. Notably, a naturally occurring MOTS-c variant, K14Q MOTS-c, has reduced binding to CK2 and does not activate it or elicit its effects. Male K14Q MOTS-c carriers exhibited a higher risk of sarcopenia and type 2 diabetes (T2D) in an age- and physical-activity-dependent manner, whereas females had an age-specific reduced risk of T2D. Altogether, these findings provide evidence that CK2 is required for MOTS-c effects.</p>\",\"PeriodicalId\":342,\"journal\":{\"name\":\"iScience\",\"volume\":\"27 11\",\"pages\":\"111212\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570452/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"iScience\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.isci.2024.111212\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/15 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.isci.2024.111212","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
MOTS-c modulates skeletal muscle function by directly binding and activating CK2.
MOTS-c is a mitochondrial microprotein that improves metabolism. Here, we demonstrate CK2 is a direct and functional target of MOTS-c. MOTS-c directly binds to CK2 and activates it in cell-free systems. MOTS-c administration to mice prevented skeletal muscle atrophy and enhanced muscle glucose uptake, which were blunted by suppressing CK2 activity. Interestingly, the effects of MOTS-c are tissue-specific. Systemically administered MOTS-c binds to CK2 in fat and muscle, yet stimulates CK2 activity in muscle while suppressing it in fat by differentially modifying CK2-interacting proteins. Notably, a naturally occurring MOTS-c variant, K14Q MOTS-c, has reduced binding to CK2 and does not activate it or elicit its effects. Male K14Q MOTS-c carriers exhibited a higher risk of sarcopenia and type 2 diabetes (T2D) in an age- and physical-activity-dependent manner, whereas females had an age-specific reduced risk of T2D. Altogether, these findings provide evidence that CK2 is required for MOTS-c effects.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.