Guangtong Cao, Mingmin Ye, Haiyan Wang, Yi Liu, Mengzhi Li
{"title":"生物力学力在病理性疤痕的形成和治疗中的作用。","authors":"Guangtong Cao, Mingmin Ye, Haiyan Wang, Yi Liu, Mengzhi Li","doi":"10.2147/CCID.S496253","DOIUrl":null,"url":null,"abstract":"<p><p>Pathological scars, including hypertrophic scar and keloid are the result of excessive tissue repair and are influenced by biomechanical forces like tension, mechanical pressure, and stiffness. These forces significantly impact scar development and progression, affecting wound healing, collagen deposition, and tissue remodeling. Understanding how these mechanical stimuli contribute to scar development is essential for devising effective therapeutic interventions. Clinically, reducing wound tension and applying mechanical pressure are key strategies for managing pathological scars. Techniques like super-tension-reduction suturing, stress-shielding polymers, and force-modulating tissue bridges (FMTB) have been shown to effectively alleviate tension and reduce scar proliferation. Additionally, Pressure Garment Therapy (PGT) is widely used to treat hypertrophic scars by reducing tissue stiffness, limiting collagen buildup, and promoting collagen realignment. Despite challenges such as discomfort and uneven pressure application, ongoing research focuses on enhancing these therapies through mechanosensitive technologies to improve both efficacy and patient comfort. This review highlights the role of biomechanical forces in scar formation and discusses therapeutic approaches that target these forces to improve clinical outcomes.</p>","PeriodicalId":10447,"journal":{"name":"Clinical, Cosmetic and Investigational Dermatology","volume":"17 ","pages":"2565-2571"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570529/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Role of Biomechanical Forces in the Formation and Treatment of Pathological Scars.\",\"authors\":\"Guangtong Cao, Mingmin Ye, Haiyan Wang, Yi Liu, Mengzhi Li\",\"doi\":\"10.2147/CCID.S496253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathological scars, including hypertrophic scar and keloid are the result of excessive tissue repair and are influenced by biomechanical forces like tension, mechanical pressure, and stiffness. These forces significantly impact scar development and progression, affecting wound healing, collagen deposition, and tissue remodeling. Understanding how these mechanical stimuli contribute to scar development is essential for devising effective therapeutic interventions. Clinically, reducing wound tension and applying mechanical pressure are key strategies for managing pathological scars. Techniques like super-tension-reduction suturing, stress-shielding polymers, and force-modulating tissue bridges (FMTB) have been shown to effectively alleviate tension and reduce scar proliferation. Additionally, Pressure Garment Therapy (PGT) is widely used to treat hypertrophic scars by reducing tissue stiffness, limiting collagen buildup, and promoting collagen realignment. Despite challenges such as discomfort and uneven pressure application, ongoing research focuses on enhancing these therapies through mechanosensitive technologies to improve both efficacy and patient comfort. This review highlights the role of biomechanical forces in scar formation and discusses therapeutic approaches that target these forces to improve clinical outcomes.</p>\",\"PeriodicalId\":10447,\"journal\":{\"name\":\"Clinical, Cosmetic and Investigational Dermatology\",\"volume\":\"17 \",\"pages\":\"2565-2571\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570529/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical, Cosmetic and Investigational Dermatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/CCID.S496253\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"DERMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical, Cosmetic and Investigational Dermatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/CCID.S496253","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
The Role of Biomechanical Forces in the Formation and Treatment of Pathological Scars.
Pathological scars, including hypertrophic scar and keloid are the result of excessive tissue repair and are influenced by biomechanical forces like tension, mechanical pressure, and stiffness. These forces significantly impact scar development and progression, affecting wound healing, collagen deposition, and tissue remodeling. Understanding how these mechanical stimuli contribute to scar development is essential for devising effective therapeutic interventions. Clinically, reducing wound tension and applying mechanical pressure are key strategies for managing pathological scars. Techniques like super-tension-reduction suturing, stress-shielding polymers, and force-modulating tissue bridges (FMTB) have been shown to effectively alleviate tension and reduce scar proliferation. Additionally, Pressure Garment Therapy (PGT) is widely used to treat hypertrophic scars by reducing tissue stiffness, limiting collagen buildup, and promoting collagen realignment. Despite challenges such as discomfort and uneven pressure application, ongoing research focuses on enhancing these therapies through mechanosensitive technologies to improve both efficacy and patient comfort. This review highlights the role of biomechanical forces in scar formation and discusses therapeutic approaches that target these forces to improve clinical outcomes.
期刊介绍:
Clinical, Cosmetic and Investigational Dermatology is an international, peer-reviewed, open access journal that focuses on the latest clinical and experimental research in all aspects of skin disease and cosmetic interventions. Normal and pathological processes in skin development and aging, their modification and treatment, as well as basic research into histology of dermal and dermal structures that provide clinical insights and potential treatment options are key topics for the journal.
Patient satisfaction, preference, quality of life, compliance, persistence and their role in developing new management options to optimize outcomes for target conditions constitute major areas of interest.
The journal is characterized by the rapid reporting of clinical studies, reviews and original research in skin research and skin care.
All areas of dermatology will be covered; contributions will be welcomed from all clinicians and basic science researchers globally.