Xiaolong Lu, Shuting Zhang, Xinhai Chen, Ying Wei, Long Cao, Bincheng Zhao, Jun Yin
{"title":"基于免滤波器声学操纵芯片的润滑油中金属颗粒高效富集技术。","authors":"Xiaolong Lu, Shuting Zhang, Xinhai Chen, Ying Wei, Long Cao, Bincheng Zhao, Jun Yin","doi":"10.1021/acs.langmuir.4c02884","DOIUrl":null,"url":null,"abstract":"<p><p>Enrichment of metal particles in lubricating oil is a crucial pretreatment for wear debris analyses in applications of condition-based machinery maintenance. Current techniques using physical filter cleaning and magnetic attachment to enrich metal particles have limitations in terms of efficiency and selectivity. This work presents an innovative acoustic manipulation chip for efficiently enriching metallic particles from lubricating oil. The platform utilizes the hybrid acoustic forces to perform high throughput particle enrichment in microchannels, even in an intensive flow environment. Regarding the viscosity effect of lubricating oil, the temperature dependence upon the particle enrichment is explored, and the figure of merit is employed to quantify the enrichment performance from the captured microscopic images. Experimental results demonstrate the proposed platform shows great nonselectivity for enriching both magnetic and nonmagnetic particles. This method opens a new door for developing automatic filter-free pretreatment tools to perform efficient particle enrichment in lubricating oil, which have great potential in many application scenarios, such as advanced wear debris analyses, oil quality monitoring, etc.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Efficiency Enrichment of Metallic Particles in Lubricating Oil Based on Filter-Free Acoustic Manipulation Chip.\",\"authors\":\"Xiaolong Lu, Shuting Zhang, Xinhai Chen, Ying Wei, Long Cao, Bincheng Zhao, Jun Yin\",\"doi\":\"10.1021/acs.langmuir.4c02884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enrichment of metal particles in lubricating oil is a crucial pretreatment for wear debris analyses in applications of condition-based machinery maintenance. Current techniques using physical filter cleaning and magnetic attachment to enrich metal particles have limitations in terms of efficiency and selectivity. This work presents an innovative acoustic manipulation chip for efficiently enriching metallic particles from lubricating oil. The platform utilizes the hybrid acoustic forces to perform high throughput particle enrichment in microchannels, even in an intensive flow environment. Regarding the viscosity effect of lubricating oil, the temperature dependence upon the particle enrichment is explored, and the figure of merit is employed to quantify the enrichment performance from the captured microscopic images. Experimental results demonstrate the proposed platform shows great nonselectivity for enriching both magnetic and nonmagnetic particles. This method opens a new door for developing automatic filter-free pretreatment tools to perform efficient particle enrichment in lubricating oil, which have great potential in many application scenarios, such as advanced wear debris analyses, oil quality monitoring, etc.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c02884\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c02884","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Efficiency Enrichment of Metallic Particles in Lubricating Oil Based on Filter-Free Acoustic Manipulation Chip.
Enrichment of metal particles in lubricating oil is a crucial pretreatment for wear debris analyses in applications of condition-based machinery maintenance. Current techniques using physical filter cleaning and magnetic attachment to enrich metal particles have limitations in terms of efficiency and selectivity. This work presents an innovative acoustic manipulation chip for efficiently enriching metallic particles from lubricating oil. The platform utilizes the hybrid acoustic forces to perform high throughput particle enrichment in microchannels, even in an intensive flow environment. Regarding the viscosity effect of lubricating oil, the temperature dependence upon the particle enrichment is explored, and the figure of merit is employed to quantify the enrichment performance from the captured microscopic images. Experimental results demonstrate the proposed platform shows great nonselectivity for enriching both magnetic and nonmagnetic particles. This method opens a new door for developing automatic filter-free pretreatment tools to perform efficient particle enrichment in lubricating oil, which have great potential in many application scenarios, such as advanced wear debris analyses, oil quality monitoring, etc.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).