通过多重组合策略提高大肠杆菌的 D-泛酸产量。

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-11-19 DOI:10.1007/s00449-024-03105-1
Lianggang Huang, Landuo Sui, Yuan Yao, Yixuan Ma, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng
{"title":"通过多重组合策略提高大肠杆菌的 D-泛酸产量。","authors":"Lianggang Huang, Landuo Sui, Yuan Yao, Yixuan Ma, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng","doi":"10.1007/s00449-024-03105-1","DOIUrl":null,"url":null,"abstract":"<p><p>D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies.\",\"authors\":\"Lianggang Huang, Landuo Sui, Yuan Yao, Yixuan Ma, Junping Zhou, Bo Zhang, Zhiqiang Liu, Yuguo Zheng\",\"doi\":\"10.1007/s00449-024-03105-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.</p>\",\"PeriodicalId\":9024,\"journal\":{\"name\":\"Bioprocess and Biosystems Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioprocess and Biosystems Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00449-024-03105-1\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03105-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

D-泛酸(D-pantothenate)被普遍认为是维生素 B5,由于其在饲料、制药和化妆品领域的重要功能而备受关注。近年来,D-泛酸盐高产微生物菌株的开发已成为一个突出的研究方向。在此,我们采用多重组合策略,将产量低的工程大肠杆菌转化为无质粒的 D-泛酸盐高产菌株。首先,通过延长细胞寿命获得初始菌株。为了促进 D-泛酸的积累,适应性地加强了辅助因子的供应。此外,筛选出了铜绿假单胞菌的异源基因 panE,该基因编码酮泛酸还原酶(EC 1.1.1.169),可催化 α-酮泛酸合成 d-泛酸。随后,我们引入了醋酸盐循环和 NOG 途径重建策略,并成功地将 D-泛酸滴度提高到 5.48 g/L。此外,我们还筛选了调控因子并优化了其第二密码子,进一步将工程菌株在摇瓶中的 DPA 产量提高到 6.02 克/升。最终的工程菌株DS6可高效生产72.40 g/L的D-泛酸,是原始菌株的3.18倍。该研究提出了一种新型的多重组合策略,用于开发 D-泛酸盐微生物细胞工厂,有利于促进 D-泛酸盐的高效生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing D-pantothenate production in Escherichia coli through multiplex combinatorial strategies.

D-pantothenate, universally acknowledged as vitamin B5, has garnered considerable interest owing to its crucial functionality in the feed, pharmaceutical, and cosmeceutical sectors. Development of microbial strains for D-pantothenate hyperproducer has emerged as a prominent research direction in recent years. Herein, we converted an engineered Escherichia coli with low yield to a plasmid-free hyperproducer of D-pantothenate using multiplex combinatorial strategies. First, an initial strain was obtained through prolonging the cell lifespan. To promote the accumulation of D-pantothenic acid, the supply of cofactors was adaptively enhanced. Additionally, the heterologous gene panE from Pseudomonas aeruginosa, which encodes ketopantoate reductase (EC 1.1.1.169) catalyzing the synthesis of d-pantoate from α-ketopantoate, was screened and integrated into the chromosome. Subsequently, a strategy of acetate recycling and NOG pathway reconstruction were introduced and successfully to improve the D-pantothenate titer to 5.48 g/L. Additionally, we screened the regulatory factors and optimized its second codon to further increase the DPA yield of the engineered strains to 6.02 g/L in shake flask. The final engineered strain DS6 could efficiently produce 72.40 g/L D-pantothenate, which is 3.18-fold higher than the original strain. This study proposed a novel multiplex combination strategy for developing microbial cell factory of D-pantothenate, which was beneficial for the advancement of efficient D-pantothenate production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1