Yu Zhou, Yuan Yuan, Xuanqi Yao, Lin Wang, Liangfang Yao, Daolin Tang, Feng Chen, Jinbao Li
{"title":"miPEP31通过调节依赖于Chi3l1的巨噬细胞极化来缓解败血症的发展。","authors":"Yu Zhou, Yuan Yuan, Xuanqi Yao, Lin Wang, Liangfang Yao, Daolin Tang, Feng Chen, Jinbao Li","doi":"10.1186/s13062-024-00568-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis is a severe condition characterized by multiple organ dysfunction resulting from an imbalanced host immune response to infections. miRNAs play a crucial role in regulating various biological processes. However, the precise role of miR-31 in the immunopathology of sepsis remains poorly understood.</p><p><strong>Methods: </strong>The concentration of hsa-miR-31-5p in patients with sepsis (both survivors and non-survivors) and healthy individuals was assayed. Using an experimental sepsis model of caecal ligation and puncture (CLP), the impact of mmu-miR-31-5p on survival, organ injury, and inflammation was evaluated. Additionally, the effect of mmu-miR-31-5p on macrophage polarization through Chi3l1 was investigated. Lastly, the therapeutic effects of miPEP31 on experimental sepsis were examined.</p><p><strong>Results: </strong>The results of miRNA sequencing (miRNA-seq) and quantitative polymerase chain reaction (q-PCR) analyses identified hsa-miR-31-5p as a potential biomarker for patients with sepsis, with non-survivors showing higher levels of hsa-miR-31-5p in peripheral blood mononuclear cells (PBMCs) compared to survivors. Functional studies conducted on peritoneal elucidated macrophages (PEMs) demonstrated that mmu-miR-31-5p inhibits M2 polarization in macrophages by downregulating Chi3l1. The utilization of miPEP31 as a therapeutic intervention had a substantial impact on reducing mortality rates, mitigating organ damage, inducing macrophage polarization towards the M2 phenotype, and suppressing the inflammatory response in murine models of severe sepsis.</p><p><strong>Conclusions: </strong>The suppression of miR-31 in sepsis plays a protective role in the host defense response by upregulating Chi3l1, highlighting the potential therapeutic efficacy of miPEP31 in sepsis treatment.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"19 1","pages":"117"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miPEP31 alleviates sepsis development by regulating Chi3l1-dependent macrophage polarization.\",\"authors\":\"Yu Zhou, Yuan Yuan, Xuanqi Yao, Lin Wang, Liangfang Yao, Daolin Tang, Feng Chen, Jinbao Li\",\"doi\":\"10.1186/s13062-024-00568-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sepsis is a severe condition characterized by multiple organ dysfunction resulting from an imbalanced host immune response to infections. miRNAs play a crucial role in regulating various biological processes. However, the precise role of miR-31 in the immunopathology of sepsis remains poorly understood.</p><p><strong>Methods: </strong>The concentration of hsa-miR-31-5p in patients with sepsis (both survivors and non-survivors) and healthy individuals was assayed. Using an experimental sepsis model of caecal ligation and puncture (CLP), the impact of mmu-miR-31-5p on survival, organ injury, and inflammation was evaluated. Additionally, the effect of mmu-miR-31-5p on macrophage polarization through Chi3l1 was investigated. Lastly, the therapeutic effects of miPEP31 on experimental sepsis were examined.</p><p><strong>Results: </strong>The results of miRNA sequencing (miRNA-seq) and quantitative polymerase chain reaction (q-PCR) analyses identified hsa-miR-31-5p as a potential biomarker for patients with sepsis, with non-survivors showing higher levels of hsa-miR-31-5p in peripheral blood mononuclear cells (PBMCs) compared to survivors. Functional studies conducted on peritoneal elucidated macrophages (PEMs) demonstrated that mmu-miR-31-5p inhibits M2 polarization in macrophages by downregulating Chi3l1. The utilization of miPEP31 as a therapeutic intervention had a substantial impact on reducing mortality rates, mitigating organ damage, inducing macrophage polarization towards the M2 phenotype, and suppressing the inflammatory response in murine models of severe sepsis.</p><p><strong>Conclusions: </strong>The suppression of miR-31 in sepsis plays a protective role in the host defense response by upregulating Chi3l1, highlighting the potential therapeutic efficacy of miPEP31 in sepsis treatment.</p>\",\"PeriodicalId\":9164,\"journal\":{\"name\":\"Biology Direct\",\"volume\":\"19 1\",\"pages\":\"117\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology Direct\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13062-024-00568-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-024-00568-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
miPEP31 alleviates sepsis development by regulating Chi3l1-dependent macrophage polarization.
Background: Sepsis is a severe condition characterized by multiple organ dysfunction resulting from an imbalanced host immune response to infections. miRNAs play a crucial role in regulating various biological processes. However, the precise role of miR-31 in the immunopathology of sepsis remains poorly understood.
Methods: The concentration of hsa-miR-31-5p in patients with sepsis (both survivors and non-survivors) and healthy individuals was assayed. Using an experimental sepsis model of caecal ligation and puncture (CLP), the impact of mmu-miR-31-5p on survival, organ injury, and inflammation was evaluated. Additionally, the effect of mmu-miR-31-5p on macrophage polarization through Chi3l1 was investigated. Lastly, the therapeutic effects of miPEP31 on experimental sepsis were examined.
Results: The results of miRNA sequencing (miRNA-seq) and quantitative polymerase chain reaction (q-PCR) analyses identified hsa-miR-31-5p as a potential biomarker for patients with sepsis, with non-survivors showing higher levels of hsa-miR-31-5p in peripheral blood mononuclear cells (PBMCs) compared to survivors. Functional studies conducted on peritoneal elucidated macrophages (PEMs) demonstrated that mmu-miR-31-5p inhibits M2 polarization in macrophages by downregulating Chi3l1. The utilization of miPEP31 as a therapeutic intervention had a substantial impact on reducing mortality rates, mitigating organ damage, inducing macrophage polarization towards the M2 phenotype, and suppressing the inflammatory response in murine models of severe sepsis.
Conclusions: The suppression of miR-31 in sepsis plays a protective role in the host defense response by upregulating Chi3l1, highlighting the potential therapeutic efficacy of miPEP31 in sepsis treatment.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.