Alan L Maida, Pedro Alejandro Perez, Cristina Bilbao-Sainz, Boris Rubinsky, Anthony N Consiglio
{"title":"等速冷冻压力辅助过冷的热力学原理。","authors":"Alan L Maida, Pedro Alejandro Perez, Cristina Bilbao-Sainz, Boris Rubinsky, Anthony N Consiglio","doi":"10.1016/j.cryobiol.2024.105168","DOIUrl":null,"url":null,"abstract":"<p><p>This study outlines a method for designing an isochoric (constant volume) system to reduce the supercooling preservation temperature without affecting the likelihood of ice nucleation and without the need for cryoprotective additives. The method involves a multiphase system wherein the biological material is separated from a second aqueous solution by a boundary that transfers pressure and heat but not mass. The pressure within the system is passively increased by the confined growth of ice within the secondary solution. This increased pressure in turn lowers the equilibrium freezing temperature of the biological matter, which may be utilized to lower the preservation temperature while maintaining the same degree of supercooling. For example, using this technique, the supercooling preservation temperature may be lowered from -2ºC to -5ºC without increasing the risk of ice nucleation, by ensuring the freezable phase makes up ∼17% of the total system volume.</p>","PeriodicalId":10897,"journal":{"name":"Cryobiology","volume":" ","pages":"105168"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The thermodynamic principles of isochoric freezing pressure-aided supercooling.\",\"authors\":\"Alan L Maida, Pedro Alejandro Perez, Cristina Bilbao-Sainz, Boris Rubinsky, Anthony N Consiglio\",\"doi\":\"10.1016/j.cryobiol.2024.105168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study outlines a method for designing an isochoric (constant volume) system to reduce the supercooling preservation temperature without affecting the likelihood of ice nucleation and without the need for cryoprotective additives. The method involves a multiphase system wherein the biological material is separated from a second aqueous solution by a boundary that transfers pressure and heat but not mass. The pressure within the system is passively increased by the confined growth of ice within the secondary solution. This increased pressure in turn lowers the equilibrium freezing temperature of the biological matter, which may be utilized to lower the preservation temperature while maintaining the same degree of supercooling. For example, using this technique, the supercooling preservation temperature may be lowered from -2ºC to -5ºC without increasing the risk of ice nucleation, by ensuring the freezable phase makes up ∼17% of the total system volume.</p>\",\"PeriodicalId\":10897,\"journal\":{\"name\":\"Cryobiology\",\"volume\":\" \",\"pages\":\"105168\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryobiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cryobiol.2024.105168\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cryobiol.2024.105168","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
The thermodynamic principles of isochoric freezing pressure-aided supercooling.
This study outlines a method for designing an isochoric (constant volume) system to reduce the supercooling preservation temperature without affecting the likelihood of ice nucleation and without the need for cryoprotective additives. The method involves a multiphase system wherein the biological material is separated from a second aqueous solution by a boundary that transfers pressure and heat but not mass. The pressure within the system is passively increased by the confined growth of ice within the secondary solution. This increased pressure in turn lowers the equilibrium freezing temperature of the biological matter, which may be utilized to lower the preservation temperature while maintaining the same degree of supercooling. For example, using this technique, the supercooling preservation temperature may be lowered from -2ºC to -5ºC without increasing the risk of ice nucleation, by ensuring the freezable phase makes up ∼17% of the total system volume.
期刊介绍:
Cryobiology: International Journal of Low Temperature Biology and Medicine publishes research articles on all aspects of low temperature biology and medicine.
Research Areas include:
• Cryoprotective additives and their pharmacological actions
• Cryosurgery
• Freeze-drying
• Freezing
• Frost hardiness in plants
• Hibernation
• Hypothermia
• Medical applications of reduced temperature
• Perfusion of organs
• All pertinent methodologies
Cryobiology is the official journal of the Society for Cryobiology.