Wei Wei, Yadi Hu, Jing Gao, Danjun Fan, Xiaorong Ye, Yan Chen
{"title":"曲美他嗪通过lncRNA H19/AMPK恢复糖尿病心脏的自噬功能:对糖尿病心肌病治疗价值的启示","authors":"Wei Wei, Yadi Hu, Jing Gao, Danjun Fan, Xiaorong Ye, Yan Chen","doi":"10.1111/1440-1681.70006","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Previous studies have shown that trimetazidine (TMZ) alleviates diabetes-induced cardiac dysfunction. However, the underlying mechanism for its protective effects on cardiac function remains incompletely understood. Diminished autophagy was found in diabetic hearts, and restoration of autophagy generates cardioprotective effect. This study aims to investigate whether and how TMZ produces protective effect through increasing autophagic activity in the diabetic heart.</p>\n </section>\n \n <section>\n \n <h3> Method</h3>\n \n <p>A high-fat diet and low-dose streptozotocin were applied to induce type 2 diabetes mellitus (T2DM) in male C57BL/6 mice, followed by treatment with TMZ for 14 weeks before cardiac function was evaluated. To mimic the diabetic condition, the neonatal rat cardiomyocytes (NRCMs) were exposed to high glucose/palmitic acid (HP) in the presence or absence of TMZ.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We found that TMZ treatment promotes autophagic flux in cardiomyocytes, which is impaired in diabetes. We further found that the AMPK and lncRNA H19 played critical roles in mediating TMZ-induced enhancement of autophagy in cardiomyocyte. We showed that TMZ treatment restored the level of H19 and phosphorylated AMPK (p-AMPK T172) in diabetic heart and NRCMs exposed to HP. Of note, the effect of TMZ on autophagy and p-AMPK was abolished by knockdown of H19.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These findings indicated that TMZ is able to recover the cardiac autophagic activity which is impaired by T2DM, and the underlying mechanism accounted for this ability is mostly likely attributed to the restored expression of H19 and AMPK activity.</p>\n </section>\n </div>","PeriodicalId":50684,"journal":{"name":"Clinical and Experimental Pharmacology and Physiology","volume":"52 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trimetazidine restores autophagy via lncRNA H19/AMPK in diabetic heart: Implications for its therapeutic value against diabetic cardiomyopathy\",\"authors\":\"Wei Wei, Yadi Hu, Jing Gao, Danjun Fan, Xiaorong Ye, Yan Chen\",\"doi\":\"10.1111/1440-1681.70006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>Previous studies have shown that trimetazidine (TMZ) alleviates diabetes-induced cardiac dysfunction. However, the underlying mechanism for its protective effects on cardiac function remains incompletely understood. Diminished autophagy was found in diabetic hearts, and restoration of autophagy generates cardioprotective effect. This study aims to investigate whether and how TMZ produces protective effect through increasing autophagic activity in the diabetic heart.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Method</h3>\\n \\n <p>A high-fat diet and low-dose streptozotocin were applied to induce type 2 diabetes mellitus (T2DM) in male C57BL/6 mice, followed by treatment with TMZ for 14 weeks before cardiac function was evaluated. To mimic the diabetic condition, the neonatal rat cardiomyocytes (NRCMs) were exposed to high glucose/palmitic acid (HP) in the presence or absence of TMZ.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We found that TMZ treatment promotes autophagic flux in cardiomyocytes, which is impaired in diabetes. We further found that the AMPK and lncRNA H19 played critical roles in mediating TMZ-induced enhancement of autophagy in cardiomyocyte. We showed that TMZ treatment restored the level of H19 and phosphorylated AMPK (p-AMPK T172) in diabetic heart and NRCMs exposed to HP. Of note, the effect of TMZ on autophagy and p-AMPK was abolished by knockdown of H19.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>These findings indicated that TMZ is able to recover the cardiac autophagic activity which is impaired by T2DM, and the underlying mechanism accounted for this ability is mostly likely attributed to the restored expression of H19 and AMPK activity.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50684,\"journal\":{\"name\":\"Clinical and Experimental Pharmacology and Physiology\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical and Experimental Pharmacology and Physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Experimental Pharmacology and Physiology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1440-1681.70006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Trimetazidine restores autophagy via lncRNA H19/AMPK in diabetic heart: Implications for its therapeutic value against diabetic cardiomyopathy
Objective
Previous studies have shown that trimetazidine (TMZ) alleviates diabetes-induced cardiac dysfunction. However, the underlying mechanism for its protective effects on cardiac function remains incompletely understood. Diminished autophagy was found in diabetic hearts, and restoration of autophagy generates cardioprotective effect. This study aims to investigate whether and how TMZ produces protective effect through increasing autophagic activity in the diabetic heart.
Method
A high-fat diet and low-dose streptozotocin were applied to induce type 2 diabetes mellitus (T2DM) in male C57BL/6 mice, followed by treatment with TMZ for 14 weeks before cardiac function was evaluated. To mimic the diabetic condition, the neonatal rat cardiomyocytes (NRCMs) were exposed to high glucose/palmitic acid (HP) in the presence or absence of TMZ.
Results
We found that TMZ treatment promotes autophagic flux in cardiomyocytes, which is impaired in diabetes. We further found that the AMPK and lncRNA H19 played critical roles in mediating TMZ-induced enhancement of autophagy in cardiomyocyte. We showed that TMZ treatment restored the level of H19 and phosphorylated AMPK (p-AMPK T172) in diabetic heart and NRCMs exposed to HP. Of note, the effect of TMZ on autophagy and p-AMPK was abolished by knockdown of H19.
Conclusion
These findings indicated that TMZ is able to recover the cardiac autophagic activity which is impaired by T2DM, and the underlying mechanism accounted for this ability is mostly likely attributed to the restored expression of H19 and AMPK activity.
期刊介绍:
Clinical and Experimental Pharmacology and Physiology is an international journal founded in 1974 by Mike Rand, Austin Doyle, John Coghlan and Paul Korner. Our focus is new frontiers in physiology and pharmacology, emphasizing the translation of basic research to clinical practice. We publish original articles, invited reviews and our exciting, cutting-edge Frontiers-in-Research series’.