Chan Wu, Yi-Xiang Hong, Xiao-Cheng Zhang, Jing-Zhou Li, Yu-Ting Li, Jun Xie, Rui-Ying Wang, Yan Wang, Gang Li
{"title":"SIRT1 对线粒体代谢的依赖性调节参与了 miR-30a-5p 介导的心肌梗死后心脏重塑过程。","authors":"Chan Wu, Yi-Xiang Hong, Xiao-Cheng Zhang, Jing-Zhou Li, Yu-Ting Li, Jun Xie, Rui-Ying Wang, Yan Wang, Gang Li","doi":"10.1016/j.freeradbiomed.2024.11.030","DOIUrl":null,"url":null,"abstract":"<p><p>Myocardial infarction-triggered myocardial remodeling is fatal for therapies. The miR-30 family is an essential component of several physiological and pathological processes. Previous studies have proved that the miR-30 family may contribute to regulating myocardial infarction. This study aimed to demonstrate that the combination of miR-30a-5p and mitochondrial metabolism recapitulates the critical features for remodeling post-myocardial infarction. Using gain- and loss-of-function of miR-30a-5p in mice, we found miR-30a-5p is highly expressed in the heart and is reduced in infarcted hearts. Further evidence showed that miR-30a-5p acts as a protective molecule to maintain myocardial remodeling, fibrosis, and mitochondrial structure. Mitochondrial function, ATP production, and mitochondrial respiratory chain proteins were positively regulated by miR-30a-5p. Mechanistically, alterations in these properties depend on SIRT1, which modulates miR-30a-5p-regulated mitochondrial metabolism. Remarkably, reactivation of SIRT1 prevented miR-30a-5p deficiency-aggravated myocardial infarction-induced myocardial remodeling. These data identified miR-30a-5p as a critical modulator of mitochondrial function in cardiomyocytes and revealed that the miR-30a-5p-SIRT1-mitochondria network is essential for myocardial infarction-induced cardiac remodeling.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":"117-128"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIRT1-dependent regulation of mitochondrial metabolism participates in miR-30a-5p-mediated cardiac remodeling post-myocardial infarction.\",\"authors\":\"Chan Wu, Yi-Xiang Hong, Xiao-Cheng Zhang, Jing-Zhou Li, Yu-Ting Li, Jun Xie, Rui-Ying Wang, Yan Wang, Gang Li\",\"doi\":\"10.1016/j.freeradbiomed.2024.11.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Myocardial infarction-triggered myocardial remodeling is fatal for therapies. The miR-30 family is an essential component of several physiological and pathological processes. Previous studies have proved that the miR-30 family may contribute to regulating myocardial infarction. This study aimed to demonstrate that the combination of miR-30a-5p and mitochondrial metabolism recapitulates the critical features for remodeling post-myocardial infarction. Using gain- and loss-of-function of miR-30a-5p in mice, we found miR-30a-5p is highly expressed in the heart and is reduced in infarcted hearts. Further evidence showed that miR-30a-5p acts as a protective molecule to maintain myocardial remodeling, fibrosis, and mitochondrial structure. Mitochondrial function, ATP production, and mitochondrial respiratory chain proteins were positively regulated by miR-30a-5p. Mechanistically, alterations in these properties depend on SIRT1, which modulates miR-30a-5p-regulated mitochondrial metabolism. Remarkably, reactivation of SIRT1 prevented miR-30a-5p deficiency-aggravated myocardial infarction-induced myocardial remodeling. These data identified miR-30a-5p as a critical modulator of mitochondrial function in cardiomyocytes and revealed that the miR-30a-5p-SIRT1-mitochondria network is essential for myocardial infarction-induced cardiac remodeling.</p>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\" \",\"pages\":\"117-128\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.freeradbiomed.2024.11.030\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2024.11.030","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SIRT1-dependent regulation of mitochondrial metabolism participates in miR-30a-5p-mediated cardiac remodeling post-myocardial infarction.
Myocardial infarction-triggered myocardial remodeling is fatal for therapies. The miR-30 family is an essential component of several physiological and pathological processes. Previous studies have proved that the miR-30 family may contribute to regulating myocardial infarction. This study aimed to demonstrate that the combination of miR-30a-5p and mitochondrial metabolism recapitulates the critical features for remodeling post-myocardial infarction. Using gain- and loss-of-function of miR-30a-5p in mice, we found miR-30a-5p is highly expressed in the heart and is reduced in infarcted hearts. Further evidence showed that miR-30a-5p acts as a protective molecule to maintain myocardial remodeling, fibrosis, and mitochondrial structure. Mitochondrial function, ATP production, and mitochondrial respiratory chain proteins were positively regulated by miR-30a-5p. Mechanistically, alterations in these properties depend on SIRT1, which modulates miR-30a-5p-regulated mitochondrial metabolism. Remarkably, reactivation of SIRT1 prevented miR-30a-5p deficiency-aggravated myocardial infarction-induced myocardial remodeling. These data identified miR-30a-5p as a critical modulator of mitochondrial function in cardiomyocytes and revealed that the miR-30a-5p-SIRT1-mitochondria network is essential for myocardial infarction-induced cardiac remodeling.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.