{"title":"深度学习洞察人类种群多基因适应的独特模式。","authors":"Devashish Tripathi, Chandrika Bhattacharyya, Analabha Basu","doi":"10.1093/nar/gkae1027","DOIUrl":null,"url":null,"abstract":"<p><p>Response to spatiotemporal variation in selection gradients resulted in signatures of polygenic adaptation in human genomes. We introduce RAISING, a two-stage deep learning framework that optimizes neural network architecture through hyperparameter tuning before performing feature selection and prediction tasks. We tested RAISING on published and newly designed simulations that incorporate the complex interplay between demographic history and selection gradients. RAISING outperformed Phylogenetic Generalized Least Squares (PGLS), ridge regression and DeepGenomeScan, with significantly higher true positive rates (TPR) in detecting genetic adaptation. It reduced computational time by 60-fold and increased TPR by up to 28% compared to DeepGenomeScan on published data. In more complex demographic simulations, RAISING showed lower false discoveries and significantly higher TPR, up to 17-fold, compared to other methods. RAISING demonstrated robustness with least sensitivity to demographic history, selection gradient and their interactions. We developed a sliding window method for genome-wide implementation of RAISING to overcome the computational challenges of high-dimensional genomic data. Applied to African, European, South Asian and East Asian populations, we identified multiple genomic regions undergoing polygenic selection. Notably, ∼70% of the regions identified in Africans are unique, with broad patterns distinguishing them from non-Africans, corroborating the Out of Africa dispersal model.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning insights into distinct patterns of polygenic adaptation across human populations.\",\"authors\":\"Devashish Tripathi, Chandrika Bhattacharyya, Analabha Basu\",\"doi\":\"10.1093/nar/gkae1027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Response to spatiotemporal variation in selection gradients resulted in signatures of polygenic adaptation in human genomes. We introduce RAISING, a two-stage deep learning framework that optimizes neural network architecture through hyperparameter tuning before performing feature selection and prediction tasks. We tested RAISING on published and newly designed simulations that incorporate the complex interplay between demographic history and selection gradients. RAISING outperformed Phylogenetic Generalized Least Squares (PGLS), ridge regression and DeepGenomeScan, with significantly higher true positive rates (TPR) in detecting genetic adaptation. It reduced computational time by 60-fold and increased TPR by up to 28% compared to DeepGenomeScan on published data. In more complex demographic simulations, RAISING showed lower false discoveries and significantly higher TPR, up to 17-fold, compared to other methods. RAISING demonstrated robustness with least sensitivity to demographic history, selection gradient and their interactions. We developed a sliding window method for genome-wide implementation of RAISING to overcome the computational challenges of high-dimensional genomic data. Applied to African, European, South Asian and East Asian populations, we identified multiple genomic regions undergoing polygenic selection. Notably, ∼70% of the regions identified in Africans are unique, with broad patterns distinguishing them from non-Africans, corroborating the Out of Africa dispersal model.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1027\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1027","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Deep learning insights into distinct patterns of polygenic adaptation across human populations.
Response to spatiotemporal variation in selection gradients resulted in signatures of polygenic adaptation in human genomes. We introduce RAISING, a two-stage deep learning framework that optimizes neural network architecture through hyperparameter tuning before performing feature selection and prediction tasks. We tested RAISING on published and newly designed simulations that incorporate the complex interplay between demographic history and selection gradients. RAISING outperformed Phylogenetic Generalized Least Squares (PGLS), ridge regression and DeepGenomeScan, with significantly higher true positive rates (TPR) in detecting genetic adaptation. It reduced computational time by 60-fold and increased TPR by up to 28% compared to DeepGenomeScan on published data. In more complex demographic simulations, RAISING showed lower false discoveries and significantly higher TPR, up to 17-fold, compared to other methods. RAISING demonstrated robustness with least sensitivity to demographic history, selection gradient and their interactions. We developed a sliding window method for genome-wide implementation of RAISING to overcome the computational challenges of high-dimensional genomic data. Applied to African, European, South Asian and East Asian populations, we identified multiple genomic regions undergoing polygenic selection. Notably, ∼70% of the regions identified in Africans are unique, with broad patterns distinguishing them from non-Africans, corroborating the Out of Africa dispersal model.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.