Haizhou Zhao, Hill Lam Lau, Kun Zhang, Chun Kit Kwok
{"title":"L-aptamer-D-oligonucleotide conjugate 在体外和细胞内对 RNA G-quadruplex 的选择性识别。","authors":"Haizhou Zhao, Hill Lam Lau, Kun Zhang, Chun Kit Kwok","doi":"10.1093/nar/gkae1034","DOIUrl":null,"url":null,"abstract":"<p><p>RNA Guanine-quadruplexes (rG4s) are important nucleic acid structures that govern vital biological processes. Although numerous tools have been developed to target rG4s, few specific tools are capable of discerning individual rG4 of interest. Herein, we design and synthesize the first L-aptamer-antisense oligonucleotide (ASO) conjugate, L-Apt.4-1c-ASO15nt(APP), with a focus on recognizing the amyloid precursor protein (APP) rG4 region as an example. The L-aptamer module binds with the rG4 structure, whereas ASO hybridizes with flanking sequences. Together, these two modules enhance the precise recognition of APP rG4. We demonstrate that the L-Apt.4-1c-ASO15nt(APP) conjugate can interact with the APP rG4 region with sub-nanomolar binding affinity, and distinguish APP rG4 from other G4s and non-G4s in vitro and in cells. We also show that L-Apt.4-1c-ASO15nt(APP) can inhibit APP protein expression. Notably, we investigate the inhibitory mechanism of this newly developed tool, and reveal that it controls gene expression by hindering DHX36 protein from unraveling the rG4, as well as by promoting translational inhibition and RNase H-mediated mRNA knockdown activity. Our novel L-aptamer-ASO conjugate tool not only enables the specific recognition of rG4 region of interest, but also allows efficient gene control via targeting rG4-containing transcripts in cells.</p>","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective recognition of RNA G-quadruplex in vitro and in cells by L-aptamer-D-oligonucleotide conjugate.\",\"authors\":\"Haizhou Zhao, Hill Lam Lau, Kun Zhang, Chun Kit Kwok\",\"doi\":\"10.1093/nar/gkae1034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>RNA Guanine-quadruplexes (rG4s) are important nucleic acid structures that govern vital biological processes. Although numerous tools have been developed to target rG4s, few specific tools are capable of discerning individual rG4 of interest. Herein, we design and synthesize the first L-aptamer-antisense oligonucleotide (ASO) conjugate, L-Apt.4-1c-ASO15nt(APP), with a focus on recognizing the amyloid precursor protein (APP) rG4 region as an example. The L-aptamer module binds with the rG4 structure, whereas ASO hybridizes with flanking sequences. Together, these two modules enhance the precise recognition of APP rG4. We demonstrate that the L-Apt.4-1c-ASO15nt(APP) conjugate can interact with the APP rG4 region with sub-nanomolar binding affinity, and distinguish APP rG4 from other G4s and non-G4s in vitro and in cells. We also show that L-Apt.4-1c-ASO15nt(APP) can inhibit APP protein expression. Notably, we investigate the inhibitory mechanism of this newly developed tool, and reveal that it controls gene expression by hindering DHX36 protein from unraveling the rG4, as well as by promoting translational inhibition and RNase H-mediated mRNA knockdown activity. Our novel L-aptamer-ASO conjugate tool not only enables the specific recognition of rG4 region of interest, but also allows efficient gene control via targeting rG4-containing transcripts in cells.</p>\",\"PeriodicalId\":19471,\"journal\":{\"name\":\"Nucleic Acids Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":16.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nucleic Acids Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/nar/gkae1034\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Selective recognition of RNA G-quadruplex in vitro and in cells by L-aptamer-D-oligonucleotide conjugate.
RNA Guanine-quadruplexes (rG4s) are important nucleic acid structures that govern vital biological processes. Although numerous tools have been developed to target rG4s, few specific tools are capable of discerning individual rG4 of interest. Herein, we design and synthesize the first L-aptamer-antisense oligonucleotide (ASO) conjugate, L-Apt.4-1c-ASO15nt(APP), with a focus on recognizing the amyloid precursor protein (APP) rG4 region as an example. The L-aptamer module binds with the rG4 structure, whereas ASO hybridizes with flanking sequences. Together, these two modules enhance the precise recognition of APP rG4. We demonstrate that the L-Apt.4-1c-ASO15nt(APP) conjugate can interact with the APP rG4 region with sub-nanomolar binding affinity, and distinguish APP rG4 from other G4s and non-G4s in vitro and in cells. We also show that L-Apt.4-1c-ASO15nt(APP) can inhibit APP protein expression. Notably, we investigate the inhibitory mechanism of this newly developed tool, and reveal that it controls gene expression by hindering DHX36 protein from unraveling the rG4, as well as by promoting translational inhibition and RNase H-mediated mRNA knockdown activity. Our novel L-aptamer-ASO conjugate tool not only enables the specific recognition of rG4 region of interest, but also allows efficient gene control via targeting rG4-containing transcripts in cells.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.