Vijay Rajamanickam, Amitha Mithra Sevanthi, Stéphanie M Swarbreck, Santosh Gudi, Nisha Singh, Vikas Kumar Singh, Tally I C Wright, Alison R Bentley, Mehanathan Muthamilarasan, Adhip Das, Viswanathan Chinnusamy, Renu Pandey
{"title":"高通量根系表型和关联分析确定了小麦(Triticum aestivum L.)磷利用效率的潜在基因组区域。","authors":"Vijay Rajamanickam, Amitha Mithra Sevanthi, Stéphanie M Swarbreck, Santosh Gudi, Nisha Singh, Vikas Kumar Singh, Tally I C Wright, Alison R Bentley, Mehanathan Muthamilarasan, Adhip Das, Viswanathan Chinnusamy, Renu Pandey","doi":"10.1007/s00425-024-04577-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Association analysis identified 77 marker-trait associations (MTAs) for PUE traits, of which 10 were high-confidence MTAs. Candidate-gene mining and in-silico expression analysis identified 13 putative candidate genes for PUE traits. Bread wheat (Triticum aestivum L.) is a major cereal crop affected by phosphorus (P) deficiency, which affects root characteristics, plant biomass, and other attributes related to P-use efficiency (PUE). Understanding the genetic mechanisms of PUE traits helps in developing bread wheat cultivars that perform well in low-P environments. With this objective, we evaluated a bread wheat panel comprising 304 accessions for 14 PUE traits with high-throughput phenotyping under low-P and optimum-P treatments and observed a significant genetic variation among germplasm lines for studied traits. Genome-wide association study (GWAS) using 14,025 high-quality single-nucleotide polymorphisms identified 77 marker-trait associations (MTAs), of which 10 were chosen as high-confidence MTAs as they had > 10% phenotypic variation with logarithm of odds (LOD) scores of more than five. Candidate-gene (CG) mining from high-confidence MTAs identified 180 unique gene models, of which 78 were differentially expressed (DEGs) with at least twofold change in expression under low-P over optimum-P. Of the 78-DEGs, 13 were thought to be putative CGs as they exhibited functional relevance to PUE traits. These CGs mainly encode for important proteins and their products involved in regulating root system architecture, P uptake, transport, and utilization. Promoter analysis from 1500 bp upstream of gene start site for 13 putative CGs revealed the presence of light responsive, salicylic-acid responsive, gibberellic-acid (GA)-responsive, auxin-responsive, and cold responsive cis-regulatory elements. High-confidence MTAs and putative CGs identified in this study can be employed in breeding programs to improve PUE traits in bread wheat.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":"260 6","pages":"142"},"PeriodicalIF":3.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-throughput root phenotyping and association analysis identified potential genomic regions for phosphorus use efficiency in wheat (Triticum aestivum L.).\",\"authors\":\"Vijay Rajamanickam, Amitha Mithra Sevanthi, Stéphanie M Swarbreck, Santosh Gudi, Nisha Singh, Vikas Kumar Singh, Tally I C Wright, Alison R Bentley, Mehanathan Muthamilarasan, Adhip Das, Viswanathan Chinnusamy, Renu Pandey\",\"doi\":\"10.1007/s00425-024-04577-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Main conclusion: </strong>Association analysis identified 77 marker-trait associations (MTAs) for PUE traits, of which 10 were high-confidence MTAs. Candidate-gene mining and in-silico expression analysis identified 13 putative candidate genes for PUE traits. Bread wheat (Triticum aestivum L.) is a major cereal crop affected by phosphorus (P) deficiency, which affects root characteristics, plant biomass, and other attributes related to P-use efficiency (PUE). Understanding the genetic mechanisms of PUE traits helps in developing bread wheat cultivars that perform well in low-P environments. With this objective, we evaluated a bread wheat panel comprising 304 accessions for 14 PUE traits with high-throughput phenotyping under low-P and optimum-P treatments and observed a significant genetic variation among germplasm lines for studied traits. Genome-wide association study (GWAS) using 14,025 high-quality single-nucleotide polymorphisms identified 77 marker-trait associations (MTAs), of which 10 were chosen as high-confidence MTAs as they had > 10% phenotypic variation with logarithm of odds (LOD) scores of more than five. Candidate-gene (CG) mining from high-confidence MTAs identified 180 unique gene models, of which 78 were differentially expressed (DEGs) with at least twofold change in expression under low-P over optimum-P. Of the 78-DEGs, 13 were thought to be putative CGs as they exhibited functional relevance to PUE traits. These CGs mainly encode for important proteins and their products involved in regulating root system architecture, P uptake, transport, and utilization. Promoter analysis from 1500 bp upstream of gene start site for 13 putative CGs revealed the presence of light responsive, salicylic-acid responsive, gibberellic-acid (GA)-responsive, auxin-responsive, and cold responsive cis-regulatory elements. High-confidence MTAs and putative CGs identified in this study can be employed in breeding programs to improve PUE traits in bread wheat.</p>\",\"PeriodicalId\":20177,\"journal\":{\"name\":\"Planta\",\"volume\":\"260 6\",\"pages\":\"142\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planta\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00425-024-04577-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04577-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
主要结论关联分析确定了 77 个 PUE 性状的标记-性状关联(MTAs),其中 10 个为高置信度 MTAs。候选基因挖掘和体内表达分析确定了 13 个 PUE 性状的候选基因。面包小麦(Triticum aestivum L.)是受缺磷影响的主要谷类作物,缺磷会影响根系特征、植株生物量和其他与磷利用效率(PUE)相关的属性。了解 PUE 特性的遗传机制有助于开发在低磷环境中表现良好的面包小麦栽培品种。为此,我们在低磷和最佳磷处理条件下,通过高通量表型分析评估了由 304 个品系组成的面包小麦群体的 14 个 PUE 性状,并观察到不同种质品系在所研究性状上存在显著的遗传变异。利用 14,025 个高质量单核苷酸多态性进行的全基因组关联研究(GWAS)发现了 77 个标记-性状关联(MTAs),其中 10 个被选为高置信度 MTAs,因为它们的表型变异大于 10%,几率对数(LOD)分数大于 5。从高置信度 MTA 中挖掘出了 180 个独特的候选基因(CG)模型,其中 78 个是差异表达基因(DEG),在低 P 条件下的表达量比最佳 P 条件下至少变化了两倍。在这 78 个差异表达基因中,有 13 个被认为是假定的 CG,因为它们与 PUE 性状具有功能相关性。这些基因组主要编码参与调节根系结构、钾吸收、运输和利用的重要蛋白质及其产物。对 13 个推定 CG 的基因起始位点上游 1500 bp 的启动子分析表明,存在光响应、水杨酸响应、赤霉素(GA)响应、辅助因子响应和冷响应顺式调节元件。本研究发现的高置信度 MTAs 和假定 CGs 可用于育种计划,以改善面包小麦的 PUE 性状。
High-throughput root phenotyping and association analysis identified potential genomic regions for phosphorus use efficiency in wheat (Triticum aestivum L.).
Main conclusion: Association analysis identified 77 marker-trait associations (MTAs) for PUE traits, of which 10 were high-confidence MTAs. Candidate-gene mining and in-silico expression analysis identified 13 putative candidate genes for PUE traits. Bread wheat (Triticum aestivum L.) is a major cereal crop affected by phosphorus (P) deficiency, which affects root characteristics, plant biomass, and other attributes related to P-use efficiency (PUE). Understanding the genetic mechanisms of PUE traits helps in developing bread wheat cultivars that perform well in low-P environments. With this objective, we evaluated a bread wheat panel comprising 304 accessions for 14 PUE traits with high-throughput phenotyping under low-P and optimum-P treatments and observed a significant genetic variation among germplasm lines for studied traits. Genome-wide association study (GWAS) using 14,025 high-quality single-nucleotide polymorphisms identified 77 marker-trait associations (MTAs), of which 10 were chosen as high-confidence MTAs as they had > 10% phenotypic variation with logarithm of odds (LOD) scores of more than five. Candidate-gene (CG) mining from high-confidence MTAs identified 180 unique gene models, of which 78 were differentially expressed (DEGs) with at least twofold change in expression under low-P over optimum-P. Of the 78-DEGs, 13 were thought to be putative CGs as they exhibited functional relevance to PUE traits. These CGs mainly encode for important proteins and their products involved in regulating root system architecture, P uptake, transport, and utilization. Promoter analysis from 1500 bp upstream of gene start site for 13 putative CGs revealed the presence of light responsive, salicylic-acid responsive, gibberellic-acid (GA)-responsive, auxin-responsive, and cold responsive cis-regulatory elements. High-confidence MTAs and putative CGs identified in this study can be employed in breeding programs to improve PUE traits in bread wheat.
期刊介绍:
Planta publishes timely and substantial articles on all aspects of plant biology.
We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.