基于 128°Y 切割铌酸锂的近零 TCF 11.6-GHz lamb 波谐振器

IF 3.5 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2024-11-18 DOI:10.1063/5.0233718
Feixuan Huang, Mingye Du, Chen Ma, Xi He, Feiya Suo, Jiawei Li, Tao Wu, Nan Wang
{"title":"基于 128°Y 切割铌酸锂的近零 TCF 11.6-GHz lamb 波谐振器","authors":"Feixuan Huang, Mingye Du, Chen Ma, Xi He, Feiya Suo, Jiawei Li, Tao Wu, Nan Wang","doi":"10.1063/5.0233718","DOIUrl":null,"url":null,"abstract":"In this paper, a high-frequency lamb wave resonator (LWR) with near zero temperature coefficient of frequency (TCF) is designed, fabricated, and measured. The reported resonator is of a bi-layer structure consisting of lithium niobate (LiNbO3 or LN) and silicon dioxide (SiO2), and lithographically patterned aluminum (Al) inter-digitated electrode fingers on top of the bi-layer structure. By adjusting the thickness ratio of LN and SiO2 layers, both the electromechanical coupling (k2) and the TCF, including both TCF at resonant frequency (TCFr) and TCF at anti-resonant frequency (TCFa), of the thickness shear (TS) type LWR are optimized. Experimental results, which are in excellent agreement with theoretical analysis, show that the fabricated 11.6-GHz LWR achieves a k2 of 12.2%, with TCFr and TCFa being −4.2 and −5.4 ppm/K over a temperature range from 30 °C to 85 °C, respectively, demonstrating huge potential in applications for future wireless communication systems above 10 GHz.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"64 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-zero TCF 11.6-GHz lamb wave resonator based on 128°Y-cut LiNbO3\",\"authors\":\"Feixuan Huang, Mingye Du, Chen Ma, Xi He, Feiya Suo, Jiawei Li, Tao Wu, Nan Wang\",\"doi\":\"10.1063/5.0233718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a high-frequency lamb wave resonator (LWR) with near zero temperature coefficient of frequency (TCF) is designed, fabricated, and measured. The reported resonator is of a bi-layer structure consisting of lithium niobate (LiNbO3 or LN) and silicon dioxide (SiO2), and lithographically patterned aluminum (Al) inter-digitated electrode fingers on top of the bi-layer structure. By adjusting the thickness ratio of LN and SiO2 layers, both the electromechanical coupling (k2) and the TCF, including both TCF at resonant frequency (TCFr) and TCF at anti-resonant frequency (TCFa), of the thickness shear (TS) type LWR are optimized. Experimental results, which are in excellent agreement with theoretical analysis, show that the fabricated 11.6-GHz LWR achieves a k2 of 12.2%, with TCFr and TCFa being −4.2 and −5.4 ppm/K over a temperature range from 30 °C to 85 °C, respectively, demonstrating huge potential in applications for future wireless communication systems above 10 GHz.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0233718\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0233718","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文设计、制造并测量了一种频率温度系数(TCF)接近于零的高频羔羊波谐振器(LWR)。报告中的谐振器采用双层结构,由铌酸锂(LiNbO3 或 LN)和二氧化硅(SiO2)组成,双层结构的顶部是光刻图案的铝(Al)间点蚀电极指。通过调整 LN 层和 SiO2 层的厚度比,优化了厚度剪切(TS)型 LWR 的机电耦合(k2)和 TCF(包括共振频率 TCFr 和反共振频率 TCFa)。实验结果与理论分析非常吻合,显示制造出的 11.6 GHz LWR 的 k2 达到 12.2%,在 30 °C 至 85 °C 的温度范围内,TCFr 和 TCFa 分别为 -4.2 和 -5.4 ppm/K,显示了未来 10 GHz 以上无线通信系统的巨大应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-zero TCF 11.6-GHz lamb wave resonator based on 128°Y-cut LiNbO3
In this paper, a high-frequency lamb wave resonator (LWR) with near zero temperature coefficient of frequency (TCF) is designed, fabricated, and measured. The reported resonator is of a bi-layer structure consisting of lithium niobate (LiNbO3 or LN) and silicon dioxide (SiO2), and lithographically patterned aluminum (Al) inter-digitated electrode fingers on top of the bi-layer structure. By adjusting the thickness ratio of LN and SiO2 layers, both the electromechanical coupling (k2) and the TCF, including both TCF at resonant frequency (TCFr) and TCF at anti-resonant frequency (TCFa), of the thickness shear (TS) type LWR are optimized. Experimental results, which are in excellent agreement with theoretical analysis, show that the fabricated 11.6-GHz LWR achieves a k2 of 12.2%, with TCFr and TCFa being −4.2 and −5.4 ppm/K over a temperature range from 30 °C to 85 °C, respectively, demonstrating huge potential in applications for future wireless communication systems above 10 GHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Nonlinear chiroptical response in lithium niobate metasurface driven by quasi-bound states in the continuum Thermoacoustic CBE imaging for monitoring microwave ablation of the liver: A feasibility study Enhancing thermal dissipation ability and electrical performance in GaN-on-GaN HEMTs through stepped-carbon buffer design Strain engineering of ferroelectric polarization and domain in the two-dimensional multiferroic semiconductor Polarization-insensitive bifocal metalenses by combining nanoimprint lithography and atomic layer deposition in the visible spectrum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1