Winda Purwitasari, Ali Sufyan, Rovi Angelo B. Villaos, Zhi-Quan Huang, Arun Bansil, Hsin Lin, Feng-Chuan Chuang
{"title":"非非晶体 AX2(A = Ca、Sr 或 Ba;X = As、Sb 或 Bi)化合物中的拓扑绝缘相","authors":"Winda Purwitasari, Ali Sufyan, Rovi Angelo B. Villaos, Zhi-Quan Huang, Arun Bansil, Hsin Lin, Feng-Chuan Chuang","doi":"10.1063/5.0237667","DOIUrl":null,"url":null,"abstract":"Owing to their unique topologically protected gapless boundary states, topological insulators (TIs) are attracting substantial interest in spintronics and quantum computing. Here, we discuss the structural, electronic, and topological properties of bulk alkaline earth di-pnictides AX2 (where A= Ca, Sr, or Ba and X= As, Sb, or Bi) using first-principles calculations under the hybrid functional approach. Our structural analysis based on phonon dispersion and molecular dynamics calculations establishes the thermodynamic stability of these materials and indicates their potential for synthesis. All investigated compounds are shown to host nontrivial phases upon including spin–orbit coupling. CaAs2, SrSb2, and BaSb2 are found to be strong TIs with sizable bandgaps of up to 213 meV. Nontrivial topology in the case of SrSb2 was further confirmed through surface state computations which showed the presence of gapless surface states. In addition, we demonstrate that using the hybrid functional approach can enhance the accuracy of the calculations to predict experimental findings. Finally, our study suggests that the alkaline earth di-pnictide family would provide a promising materials platform for developing applications of TIs.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"80 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological insulating phase in nonsymmorphic bulk AX2 (A = Ca, Sr, or Ba; and X = As, Sb, or Bi) compounds\",\"authors\":\"Winda Purwitasari, Ali Sufyan, Rovi Angelo B. Villaos, Zhi-Quan Huang, Arun Bansil, Hsin Lin, Feng-Chuan Chuang\",\"doi\":\"10.1063/5.0237667\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Owing to their unique topologically protected gapless boundary states, topological insulators (TIs) are attracting substantial interest in spintronics and quantum computing. Here, we discuss the structural, electronic, and topological properties of bulk alkaline earth di-pnictides AX2 (where A= Ca, Sr, or Ba and X= As, Sb, or Bi) using first-principles calculations under the hybrid functional approach. Our structural analysis based on phonon dispersion and molecular dynamics calculations establishes the thermodynamic stability of these materials and indicates their potential for synthesis. All investigated compounds are shown to host nontrivial phases upon including spin–orbit coupling. CaAs2, SrSb2, and BaSb2 are found to be strong TIs with sizable bandgaps of up to 213 meV. Nontrivial topology in the case of SrSb2 was further confirmed through surface state computations which showed the presence of gapless surface states. In addition, we demonstrate that using the hybrid functional approach can enhance the accuracy of the calculations to predict experimental findings. Finally, our study suggests that the alkaline earth di-pnictide family would provide a promising materials platform for developing applications of TIs.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"80 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0237667\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0237667","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Topological insulating phase in nonsymmorphic bulk AX2 (A = Ca, Sr, or Ba; and X = As, Sb, or Bi) compounds
Owing to their unique topologically protected gapless boundary states, topological insulators (TIs) are attracting substantial interest in spintronics and quantum computing. Here, we discuss the structural, electronic, and topological properties of bulk alkaline earth di-pnictides AX2 (where A= Ca, Sr, or Ba and X= As, Sb, or Bi) using first-principles calculations under the hybrid functional approach. Our structural analysis based on phonon dispersion and molecular dynamics calculations establishes the thermodynamic stability of these materials and indicates their potential for synthesis. All investigated compounds are shown to host nontrivial phases upon including spin–orbit coupling. CaAs2, SrSb2, and BaSb2 are found to be strong TIs with sizable bandgaps of up to 213 meV. Nontrivial topology in the case of SrSb2 was further confirmed through surface state computations which showed the presence of gapless surface states. In addition, we demonstrate that using the hybrid functional approach can enhance the accuracy of the calculations to predict experimental findings. Finally, our study suggests that the alkaline earth di-pnictide family would provide a promising materials platform for developing applications of TIs.
期刊介绍:
Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology.
In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics.
APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field.
Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.