Beatriz Tome Gouveia, Kevin E. Kenworthy, Ambika Chandra, Brian M. Schwartz, Jing Zhang, Paul L. Raymer, Yanqi Wu, Marta Pudzianowska, James Baird, Grady L. Miller, J. Bryan Unruh, Benjamin G. Wherley, Dennis L. Martin, Justin Q. Moss, Sameer Khanal, Susana Milla-Lewis
{"title":"增强暖季型草坪草的抗旱性:美国南部多州合作项目十四年来取得的进展","authors":"Beatriz Tome Gouveia, Kevin E. Kenworthy, Ambika Chandra, Brian M. Schwartz, Jing Zhang, Paul L. Raymer, Yanqi Wu, Marta Pudzianowska, James Baird, Grady L. Miller, J. Bryan Unruh, Benjamin G. Wherley, Dennis L. Martin, Justin Q. Moss, Sameer Khanal, Susana Milla-Lewis","doi":"10.1002/csc2.21393","DOIUrl":null,"url":null,"abstract":"In turfgrass breeding, drought resistance is a primary trait for improvement due to scarcity and reduced quality of water for irrigation. Therefore, in 2010, the turfgrass breeding programs at six public universities joined efforts to address these challenges by cross evaluating breeding lines for the most economically significant warm-season turfgrass species in the southern United States through a United States Department of Agriculture-National Institute for Food and Agriculture Specialty Crop Research Initiative funded project. Three breeding cycles were associated with three completed (2010–2014, 2014–2019, and 2019–2024) collaborative grant projects, but the efficiency of this partnership in terms of gains from selection has not been measured. Our objectives were to (1) estimate the expected and realized genetic gain for drought resistance and turfgrass quality for three breeding cycles, (2) compare cultivars developed with support of the projects versus standard cultivars in a historical data analysis, and (3) compare genetic gain for traits assessed visually versus using small unmanned aircraft systems imagery, both in drought and non-drought environments. For these purposes, historical data were investigated with a retrospective analysis of project trials evaluated 2011–2024. Our findings for the realized genetic gain demonstrated progress in enhancing drought resistance in bermudagrass, St. Augustinegrass, seashore paspalum, and zoysiagrass. In addition, notable positive increments for this trait were documented for each cycle compared to the standard cultivars, particularly in bermudagrass, St. Augustinegrass, and zoysiagrass. While heritability was higher for visually assessed traits, genetic increments were more pronounced for imagery-assessed traits.","PeriodicalId":10849,"journal":{"name":"Crop Science","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing drought resistance in warm-season turfgrasses: Fourteen years of progress through a multistate collaborative project across the southern United States\",\"authors\":\"Beatriz Tome Gouveia, Kevin E. Kenworthy, Ambika Chandra, Brian M. Schwartz, Jing Zhang, Paul L. Raymer, Yanqi Wu, Marta Pudzianowska, James Baird, Grady L. Miller, J. Bryan Unruh, Benjamin G. Wherley, Dennis L. Martin, Justin Q. Moss, Sameer Khanal, Susana Milla-Lewis\",\"doi\":\"10.1002/csc2.21393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In turfgrass breeding, drought resistance is a primary trait for improvement due to scarcity and reduced quality of water for irrigation. Therefore, in 2010, the turfgrass breeding programs at six public universities joined efforts to address these challenges by cross evaluating breeding lines for the most economically significant warm-season turfgrass species in the southern United States through a United States Department of Agriculture-National Institute for Food and Agriculture Specialty Crop Research Initiative funded project. Three breeding cycles were associated with three completed (2010–2014, 2014–2019, and 2019–2024) collaborative grant projects, but the efficiency of this partnership in terms of gains from selection has not been measured. Our objectives were to (1) estimate the expected and realized genetic gain for drought resistance and turfgrass quality for three breeding cycles, (2) compare cultivars developed with support of the projects versus standard cultivars in a historical data analysis, and (3) compare genetic gain for traits assessed visually versus using small unmanned aircraft systems imagery, both in drought and non-drought environments. For these purposes, historical data were investigated with a retrospective analysis of project trials evaluated 2011–2024. Our findings for the realized genetic gain demonstrated progress in enhancing drought resistance in bermudagrass, St. Augustinegrass, seashore paspalum, and zoysiagrass. In addition, notable positive increments for this trait were documented for each cycle compared to the standard cultivars, particularly in bermudagrass, St. Augustinegrass, and zoysiagrass. While heritability was higher for visually assessed traits, genetic increments were more pronounced for imagery-assessed traits.\",\"PeriodicalId\":10849,\"journal\":{\"name\":\"Crop Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crop Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/csc2.21393\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/csc2.21393","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Enhancing drought resistance in warm-season turfgrasses: Fourteen years of progress through a multistate collaborative project across the southern United States
In turfgrass breeding, drought resistance is a primary trait for improvement due to scarcity and reduced quality of water for irrigation. Therefore, in 2010, the turfgrass breeding programs at six public universities joined efforts to address these challenges by cross evaluating breeding lines for the most economically significant warm-season turfgrass species in the southern United States through a United States Department of Agriculture-National Institute for Food and Agriculture Specialty Crop Research Initiative funded project. Three breeding cycles were associated with three completed (2010–2014, 2014–2019, and 2019–2024) collaborative grant projects, but the efficiency of this partnership in terms of gains from selection has not been measured. Our objectives were to (1) estimate the expected and realized genetic gain for drought resistance and turfgrass quality for three breeding cycles, (2) compare cultivars developed with support of the projects versus standard cultivars in a historical data analysis, and (3) compare genetic gain for traits assessed visually versus using small unmanned aircraft systems imagery, both in drought and non-drought environments. For these purposes, historical data were investigated with a retrospective analysis of project trials evaluated 2011–2024. Our findings for the realized genetic gain demonstrated progress in enhancing drought resistance in bermudagrass, St. Augustinegrass, seashore paspalum, and zoysiagrass. In addition, notable positive increments for this trait were documented for each cycle compared to the standard cultivars, particularly in bermudagrass, St. Augustinegrass, and zoysiagrass. While heritability was higher for visually assessed traits, genetic increments were more pronounced for imagery-assessed traits.
期刊介绍:
Articles in Crop Science are of interest to researchers, policy makers, educators, and practitioners. The scope of articles in Crop Science includes crop breeding and genetics; crop physiology and metabolism; crop ecology, production, and management; seed physiology, production, and technology; turfgrass science; forage and grazing land ecology and management; genomics, molecular genetics, and biotechnology; germplasm collections and their use; and biomedical, health beneficial, and nutritionally enhanced plants. Crop Science publishes thematic collections of articles across its scope and includes topical Review and Interpretation, and Perspectives articles.