基石类群推动内陆水域甲烷和难溶解有机物的同步产生

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-11-19 DOI:10.1016/j.watres.2024.122821
Xinjie Shi, Wanzhu Li, Baoli Wang, Na Liu, Xia Liang, Meiling Yang, Cong-Qiang Liu
{"title":"基石类群推动内陆水域甲烷和难溶解有机物的同步产生","authors":"Xinjie Shi, Wanzhu Li, Baoli Wang, Na Liu, Xia Liang, Meiling Yang, Cong-Qiang Liu","doi":"10.1016/j.watres.2024.122821","DOIUrl":null,"url":null,"abstract":"The production of both methane (CH4) and refractory dissolved organic matter (RDOM) depends on microbial consortia in inland waters, and it is unclear yet the link of these two processes and the underlying microbial regulation mechanisms. Therefore, a large-scale survey was conducted in China's inland waters, with the measurement of CH4 concentrations, DOM chemical composition, microbial community composition, and relative environmental parameters mainly by chromatographic, optical, mass spectrometric, and high-throughput sequencing analyses, to clarify the abovementioned questions. Here, we found a synchronous production of CH4 and RDOM linked by microbial consortia in inland waters. The increasing microbial cooperation driven by the keystone taxa (mainly Fluviicola and Polynucleobacter) could promote the transformation of labile DOM into RDOM and meanwhile benefit methanogenic microbial communities to produce CH4. As such, CH4 and RDOM showed consistent spatial differences, which were mainly influenced by total nitrogen and dissolved oxygen concentrations. This finding deepened the understanding of microbial-driven carbon transformation and will help to more accurately evaluate the carbon source-sink relationship in inland waters.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"69 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Keystone taxa drive the synchronous production of methane and refractory dissolved organic matter in inland waters\",\"authors\":\"Xinjie Shi, Wanzhu Li, Baoli Wang, Na Liu, Xia Liang, Meiling Yang, Cong-Qiang Liu\",\"doi\":\"10.1016/j.watres.2024.122821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The production of both methane (CH4) and refractory dissolved organic matter (RDOM) depends on microbial consortia in inland waters, and it is unclear yet the link of these two processes and the underlying microbial regulation mechanisms. Therefore, a large-scale survey was conducted in China's inland waters, with the measurement of CH4 concentrations, DOM chemical composition, microbial community composition, and relative environmental parameters mainly by chromatographic, optical, mass spectrometric, and high-throughput sequencing analyses, to clarify the abovementioned questions. Here, we found a synchronous production of CH4 and RDOM linked by microbial consortia in inland waters. The increasing microbial cooperation driven by the keystone taxa (mainly Fluviicola and Polynucleobacter) could promote the transformation of labile DOM into RDOM and meanwhile benefit methanogenic microbial communities to produce CH4. As such, CH4 and RDOM showed consistent spatial differences, which were mainly influenced by total nitrogen and dissolved oxygen concentrations. This finding deepened the understanding of microbial-driven carbon transformation and will help to more accurately evaluate the carbon source-sink relationship in inland waters.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2024.122821\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122821","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

甲烷(CH4)和难降解有机物(RDOM)的产生都依赖于内陆水域的微生物群落,而这两个过程之间的联系及其背后的微生物调控机制尚不清楚。因此,我们对中国内陆水域进行了大规模调查,主要通过色谱、光学、质谱和高通量测序分析,测定了CH4浓度、DOM化学组成、微生物群落组成和相关环境参数,以澄清上述问题。在这里,我们发现内陆水域的微生物群落会同步产生 CH4 和 RDOM。在关键类群(主要是 Fluviicola 和 Polynucleobacter)的驱动下,微生物的合作不断加强,这可能会促进可溶性 DOM 向 RDOM 的转化,同时有利于产甲烷微生物群落产生 CH4。因此,CH4 和 RDOM 显示出一致的空间差异,主要受总氮和溶解氧浓度的影响。这一发现加深了人们对微生物驱动的碳转化的理解,有助于更准确地评估内陆水域的碳源-汇关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Keystone taxa drive the synchronous production of methane and refractory dissolved organic matter in inland waters
The production of both methane (CH4) and refractory dissolved organic matter (RDOM) depends on microbial consortia in inland waters, and it is unclear yet the link of these two processes and the underlying microbial regulation mechanisms. Therefore, a large-scale survey was conducted in China's inland waters, with the measurement of CH4 concentrations, DOM chemical composition, microbial community composition, and relative environmental parameters mainly by chromatographic, optical, mass spectrometric, and high-throughput sequencing analyses, to clarify the abovementioned questions. Here, we found a synchronous production of CH4 and RDOM linked by microbial consortia in inland waters. The increasing microbial cooperation driven by the keystone taxa (mainly Fluviicola and Polynucleobacter) could promote the transformation of labile DOM into RDOM and meanwhile benefit methanogenic microbial communities to produce CH4. As such, CH4 and RDOM showed consistent spatial differences, which were mainly influenced by total nitrogen and dissolved oxygen concentrations. This finding deepened the understanding of microbial-driven carbon transformation and will help to more accurately evaluate the carbon source-sink relationship in inland waters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Molecular ecological insights into the synergistic response mechanism of nitrogen transformation, electron flow and antibiotic resistance genes in aerobic activated sludge systems driven by sulfamethoxazole and/or trimethoprim stresses Uncertainty analysis method for diagnosing multi-point defects in urban drainage systems Regulation mechanism of optimal bubble diameter for ozone wastewater treatment Expanding the pH range of Fenton-like reactions for pollutant degradation: The impact of acidic microenvironments A Novel Framework for Optimization and Evaluation of Sensors Network in Urban Drainage System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1