Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah
{"title":"用于高性能薄膜锌-离子电池的化学加工多孔 V2O5 薄膜阴极","authors":"Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah","doi":"10.1002/adfm.202417607","DOIUrl":null,"url":null,"abstract":"Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V<sub>2</sub>O<sub>5</sub>) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V<sub>2</sub>O<sub>5</sub> precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm<sup>−</sup><sup>2</sup>, areal energy of 50.18 µWh cm<sup>−</sup><sup>2</sup>, and areal power of 53 µW cm<sup>−</sup><sup>2</sup> at 50 µA cm<sup>−</sup><sup>2</sup> in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"7 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemically Processed Porous V2O5 Thin-Film Cathodes for High-Performance Thin-film Zn-Ion Batteries\",\"authors\":\"Jingli Luo, Mengjue Cao, Nibagani Naresh, Jnanraj Borah, Shuhui Li, Tianlei Wang, Bimal K. Sarma, Jianfeng Yao, Ivan P. Parkin, Buddha Deka Boruah\",\"doi\":\"10.1002/adfm.202417607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V<sub>2</sub>O<sub>5</sub>) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V<sub>2</sub>O<sub>5</sub> precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm<sup>−</sup><sup>2</sup>, areal energy of 50.18 µWh cm<sup>−</sup><sup>2</sup>, and areal power of 53 µW cm<sup>−</sup><sup>2</sup> at 50 µA cm<sup>−</sup><sup>2</sup> in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202417607\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417607","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Thin-film rechargeable batteries have a wide range of applications due to their unique properties such as small size, thinness, and the ability to power smart devices, including portable electronic devices, medical devices, smart cards, RFID tags, and Internet of Things (IoT) devices. Processing thin-film electrodes for these batteries generally relies on standard physical vapor deposition technologies. However, producing porous thin-films using these techniques presents significant challenges. Here, a rapid and cost-effective chemical route for processing porous vanadium oxide (V2O5) thin-film cathodes for application in Zinc-ion-based thin-film batteries (Zn-TFBs) is explored. The V2O5 precursor process uses an industrially viable spraying technique, which not only offers impressive charge storage performance of an areal capacity of 47.34 µAh cm−2, areal energy of 50.18 µWh cm−2, and areal power of 53 µW cm−2 at 50 µA cm−2 in the optimized gel-electrolyte composition. This study introduces a cost-effective and industrially viable method for processing highly porous thin-film cathodes, enabling the production of high-performance, affordable, and safer thin-film batteries.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.