Hanqiang Wang, Zhicheng Zhong, Sergio Gámez-Valenzuela, Jin-Woo Lee, Bolin Li, Changjing Xu, Jie Yang, Huiliang Sun, Bumjoon J. Kim, Bin Liu, Xugang Guo
{"title":"利用三维全球芳香族碳硼酰固体添加剂实现高性能有机太阳能电池","authors":"Hanqiang Wang, Zhicheng Zhong, Sergio Gámez-Valenzuela, Jin-Woo Lee, Bolin Li, Changjing Xu, Jie Yang, Huiliang Sun, Bumjoon J. Kim, Bin Liu, Xugang Guo","doi":"10.1002/adfm.202418805","DOIUrl":null,"url":null,"abstract":"A key factor in optimizing organic solar cells (OSCs) is the precise control of blend film morphology to enhance exciton dissociation and charge transport. Solid additives play a vital role in this process, with 3D polyhedral or spherical molecules being ideal candidates due to their delocalized π-orbitals and omnidirectional charge transport. However, the application of classical fullerene derivatives as spherical additives is limited by their synthetic complicacy and poor solubility. Herein, the potential of 3D globally aromatic carboranyl cages as solid additives, specifically 1-amino-<i>o</i>-carborane (CB-NH<sub>2</sub>) and 1-carboxy-<i>o</i>-carborane (CB-COOH), is explored to fine-tune the film morphology and improve the performance of OSCs. These spherical molecules provide an extensive surface for hydrogen bonding interactions, which serve as the driving force for manipulating the vertical phase separation and active layer crystallinity. Remarkably, CB-NH<sub>2</sub>-processed devices with well-tuned morphology yield a remarkable power conversion efficiency of 19.48%, highlighting the effectiveness of 3D carboranyl additives on improving OSC performance. This work challenges the reliance on fullerene derivatives as spherical additives and offers new insights into the mechanisms by which 3D globally aromatic additives can achieve high performance in OSCs, emphasizing the significance of molecular engineering in the development of next-generation solar cell technology.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Performance Organic Solar Cells Enabled by 3D Globally Aromatic Carboranyl Solid Additive\",\"authors\":\"Hanqiang Wang, Zhicheng Zhong, Sergio Gámez-Valenzuela, Jin-Woo Lee, Bolin Li, Changjing Xu, Jie Yang, Huiliang Sun, Bumjoon J. Kim, Bin Liu, Xugang Guo\",\"doi\":\"10.1002/adfm.202418805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key factor in optimizing organic solar cells (OSCs) is the precise control of blend film morphology to enhance exciton dissociation and charge transport. Solid additives play a vital role in this process, with 3D polyhedral or spherical molecules being ideal candidates due to their delocalized π-orbitals and omnidirectional charge transport. However, the application of classical fullerene derivatives as spherical additives is limited by their synthetic complicacy and poor solubility. Herein, the potential of 3D globally aromatic carboranyl cages as solid additives, specifically 1-amino-<i>o</i>-carborane (CB-NH<sub>2</sub>) and 1-carboxy-<i>o</i>-carborane (CB-COOH), is explored to fine-tune the film morphology and improve the performance of OSCs. These spherical molecules provide an extensive surface for hydrogen bonding interactions, which serve as the driving force for manipulating the vertical phase separation and active layer crystallinity. Remarkably, CB-NH<sub>2</sub>-processed devices with well-tuned morphology yield a remarkable power conversion efficiency of 19.48%, highlighting the effectiveness of 3D carboranyl additives on improving OSC performance. This work challenges the reliance on fullerene derivatives as spherical additives and offers new insights into the mechanisms by which 3D globally aromatic additives can achieve high performance in OSCs, emphasizing the significance of molecular engineering in the development of next-generation solar cell technology.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202418805\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
High-Performance Organic Solar Cells Enabled by 3D Globally Aromatic Carboranyl Solid Additive
A key factor in optimizing organic solar cells (OSCs) is the precise control of blend film morphology to enhance exciton dissociation and charge transport. Solid additives play a vital role in this process, with 3D polyhedral or spherical molecules being ideal candidates due to their delocalized π-orbitals and omnidirectional charge transport. However, the application of classical fullerene derivatives as spherical additives is limited by their synthetic complicacy and poor solubility. Herein, the potential of 3D globally aromatic carboranyl cages as solid additives, specifically 1-amino-o-carborane (CB-NH2) and 1-carboxy-o-carborane (CB-COOH), is explored to fine-tune the film morphology and improve the performance of OSCs. These spherical molecules provide an extensive surface for hydrogen bonding interactions, which serve as the driving force for manipulating the vertical phase separation and active layer crystallinity. Remarkably, CB-NH2-processed devices with well-tuned morphology yield a remarkable power conversion efficiency of 19.48%, highlighting the effectiveness of 3D carboranyl additives on improving OSC performance. This work challenges the reliance on fullerene derivatives as spherical additives and offers new insights into the mechanisms by which 3D globally aromatic additives can achieve high performance in OSCs, emphasizing the significance of molecular engineering in the development of next-generation solar cell technology.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.