{"title":"在 LiNi0.5Co0.2Mn0.3O2 中使用双功能层进行表面工程,以制造高性能锂离子电池正极材料","authors":"Yinghao Zhao, Pongsakorn Kantichaimongkol, Chengwu Yang, Zhiqiang Dai, Dong Xu, Xueqing Zhang, Manunya Okhawilai, Prasit Pattananuwat, Xinyu Zhang, Jiaqian Qin","doi":"10.1016/j.jallcom.2024.177661","DOIUrl":null,"url":null,"abstract":"Implementing a stable interfacial architecture with augmented conductivity emerges as a pivotal approach for bolstering the stability of LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NCM523) and facilitating expedited Li<sup>+</sup> transport. To augment efficiency and foster compatibility with industrial processes, a novel one-step, high-temperature modification technique is introduced for the fabrication of a dual-layer LiCoO<sub>2</sub> & Li<sub>3</sub>BO<sub>3</sub> (LCO/LBO) coating on the NCM523. This is achieved through the utilization of nano-CoB particles (nCoB) as a medium to capture LiOH impurities. The special coating architecture not only propels Li<sup>+</sup> diffusion at the interphase but also mitigates acid-induced corrosion, thereby preserving the structural integrity of cathode material throughout its operational lifecycle. Owing to this innovative coating, the electrochemical attributes of NCM523 witness significant improvement, demonstrated by a remarkable 98.2% capacity retention following 100 cycles at 1<!-- --> <!-- -->C, and a sustained 75.9% capacity retention after 300 cycles, a stark contrast to the 29.2% observed with uncoated NCM523. This investigation validates the LCO/LBO coating paradigm as a means to synergistically enhance Li<sup>+</sup> translocation across the electrical double layer while countering cathodic structural erosion, offering fresh perspectives in the domain of NCM523 cathode surface enhancement.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"99 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface engineering with bifunctional layer in LiNi0.5Co0.2Mn0.3O2 for high-performance cathode materials of lithium-ion batteries\",\"authors\":\"Yinghao Zhao, Pongsakorn Kantichaimongkol, Chengwu Yang, Zhiqiang Dai, Dong Xu, Xueqing Zhang, Manunya Okhawilai, Prasit Pattananuwat, Xinyu Zhang, Jiaqian Qin\",\"doi\":\"10.1016/j.jallcom.2024.177661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementing a stable interfacial architecture with augmented conductivity emerges as a pivotal approach for bolstering the stability of LiNi<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>O<sub>2</sub> (NCM523) and facilitating expedited Li<sup>+</sup> transport. To augment efficiency and foster compatibility with industrial processes, a novel one-step, high-temperature modification technique is introduced for the fabrication of a dual-layer LiCoO<sub>2</sub> & Li<sub>3</sub>BO<sub>3</sub> (LCO/LBO) coating on the NCM523. This is achieved through the utilization of nano-CoB particles (nCoB) as a medium to capture LiOH impurities. The special coating architecture not only propels Li<sup>+</sup> diffusion at the interphase but also mitigates acid-induced corrosion, thereby preserving the structural integrity of cathode material throughout its operational lifecycle. Owing to this innovative coating, the electrochemical attributes of NCM523 witness significant improvement, demonstrated by a remarkable 98.2% capacity retention following 100 cycles at 1<!-- --> <!-- -->C, and a sustained 75.9% capacity retention after 300 cycles, a stark contrast to the 29.2% observed with uncoated NCM523. This investigation validates the LCO/LBO coating paradigm as a means to synergistically enhance Li<sup>+</sup> translocation across the electrical double layer while countering cathodic structural erosion, offering fresh perspectives in the domain of NCM523 cathode surface enhancement.\",\"PeriodicalId\":344,\"journal\":{\"name\":\"Journal of Alloys and Compounds\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Compounds\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jallcom.2024.177661\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177661","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Surface engineering with bifunctional layer in LiNi0.5Co0.2Mn0.3O2 for high-performance cathode materials of lithium-ion batteries
Implementing a stable interfacial architecture with augmented conductivity emerges as a pivotal approach for bolstering the stability of LiNi0.5Co0.2Mn0.3O2 (NCM523) and facilitating expedited Li+ transport. To augment efficiency and foster compatibility with industrial processes, a novel one-step, high-temperature modification technique is introduced for the fabrication of a dual-layer LiCoO2 & Li3BO3 (LCO/LBO) coating on the NCM523. This is achieved through the utilization of nano-CoB particles (nCoB) as a medium to capture LiOH impurities. The special coating architecture not only propels Li+ diffusion at the interphase but also mitigates acid-induced corrosion, thereby preserving the structural integrity of cathode material throughout its operational lifecycle. Owing to this innovative coating, the electrochemical attributes of NCM523 witness significant improvement, demonstrated by a remarkable 98.2% capacity retention following 100 cycles at 1 C, and a sustained 75.9% capacity retention after 300 cycles, a stark contrast to the 29.2% observed with uncoated NCM523. This investigation validates the LCO/LBO coating paradigm as a means to synergistically enhance Li+ translocation across the electrical double layer while countering cathodic structural erosion, offering fresh perspectives in the domain of NCM523 cathode surface enhancement.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.