DESI暗能量拟合的一致理论

IF 5.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Journal of Cosmology and Astroparticle Physics Pub Date : 2024-11-19 DOI:10.1088/1475-7516/2024/11/025
Alessio Notari, Michele Redi and Andrea Tesi
{"title":"DESI暗能量拟合的一致理论","authors":"Alessio Notari, Michele Redi and Andrea Tesi","doi":"10.1088/1475-7516/2024/11/025","DOIUrl":null,"url":null,"abstract":"We search for physically consistent realizations of evolving dark energy suggested by the cosmological fit of DESI, Planck and Supernovae data. First we note that any lagrangian description of the standard Chevallier-Polarski-Linder (CPL) parametrization for the dark energy equation of state w, allows for the addition of a cosmological constant. We perform the cosmological fit finding new regions of parameter space that however continue to favour dark energy with w < -1 at early times, that is challenging to realize in consistent theories. Next, in the spirit of effective field theories, we consider the effect of higher order terms in the Taylor expansion of the equation of state of dark energy around the present epoch. We find that non-linear corrections of the equation of state are weakly constrained, thus opening the way to scenarios that differ from CPL at early times, possibly with w > -1 at all times. We present indeed scenarios where evolving dark energy can be realized through quintessence models. We introduce in particular the ramp model where dark energy coincides with CPL at late times and approximates to a cosmological constant at early times. The latter model provides a much better fit than ΛCDM, and only slightly worse than w0waCDM, but with the notable advantage of being described by a simple and theoretically consistent lagrangian of a canonical quintessence model.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"106 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consistent theories for the DESI dark energy fit\",\"authors\":\"Alessio Notari, Michele Redi and Andrea Tesi\",\"doi\":\"10.1088/1475-7516/2024/11/025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We search for physically consistent realizations of evolving dark energy suggested by the cosmological fit of DESI, Planck and Supernovae data. First we note that any lagrangian description of the standard Chevallier-Polarski-Linder (CPL) parametrization for the dark energy equation of state w, allows for the addition of a cosmological constant. We perform the cosmological fit finding new regions of parameter space that however continue to favour dark energy with w < -1 at early times, that is challenging to realize in consistent theories. Next, in the spirit of effective field theories, we consider the effect of higher order terms in the Taylor expansion of the equation of state of dark energy around the present epoch. We find that non-linear corrections of the equation of state are weakly constrained, thus opening the way to scenarios that differ from CPL at early times, possibly with w > -1 at all times. We present indeed scenarios where evolving dark energy can be realized through quintessence models. We introduce in particular the ramp model where dark energy coincides with CPL at late times and approximates to a cosmological constant at early times. The latter model provides a much better fit than ΛCDM, and only slightly worse than w0waCDM, but with the notable advantage of being described by a simple and theoretically consistent lagrangian of a canonical quintessence model.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2024/11/025\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2024/11/025","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过对 DESI、普朗克和超新星数据的宇宙学拟合,寻找物理上一致的演化暗能量的实现方式。首先,我们注意到暗能量状态方程 w 的标准切瓦利埃-波兰斯基-林德(CPL)参数的任何拉格朗日描述都允许添加一个宇宙学常数。我们进行了宇宙学拟合,发现了参数空间的新区域,然而这些区域在早期继续倾向于 w < -1 的暗能量,这在一致理论中是难以实现的。接下来,本着有效场理论的精神,我们考虑了暗能量状态方程泰勒扩展中的高阶项在本纪附近的影响。我们发现,状态方程的非线性修正受到弱约束,从而为早期不同于CPL的情景开辟了道路,可能在任何时候w都>-1。我们确实提出了可以通过五重模型实现暗能量演化的情景。我们特别介绍了斜坡模型,即暗能量在晚期与CPL重合,而在早期近似于宇宙常数。后一种模型的拟合效果比ΛCDM好得多,只比w0waCDM稍差一些,但它有一个显著的优点,即可以用一个简单的、理论上一致的经典五元模型的拉格朗日来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Consistent theories for the DESI dark energy fit
We search for physically consistent realizations of evolving dark energy suggested by the cosmological fit of DESI, Planck and Supernovae data. First we note that any lagrangian description of the standard Chevallier-Polarski-Linder (CPL) parametrization for the dark energy equation of state w, allows for the addition of a cosmological constant. We perform the cosmological fit finding new regions of parameter space that however continue to favour dark energy with w < -1 at early times, that is challenging to realize in consistent theories. Next, in the spirit of effective field theories, we consider the effect of higher order terms in the Taylor expansion of the equation of state of dark energy around the present epoch. We find that non-linear corrections of the equation of state are weakly constrained, thus opening the way to scenarios that differ from CPL at early times, possibly with w > -1 at all times. We present indeed scenarios where evolving dark energy can be realized through quintessence models. We introduce in particular the ramp model where dark energy coincides with CPL at late times and approximates to a cosmological constant at early times. The latter model provides a much better fit than ΛCDM, and only slightly worse than w0waCDM, but with the notable advantage of being described by a simple and theoretically consistent lagrangian of a canonical quintessence model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cosmology and Astroparticle Physics
Journal of Cosmology and Astroparticle Physics 地学天文-天文与天体物理
CiteScore
10.20
自引率
23.40%
发文量
632
审稿时长
1 months
期刊介绍: Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.
期刊最新文献
The stochastic gravitational wave background from primordial gravitational atoms Relativistic Khronon theory in agreement with modified Newtonian dynamics and large-scale cosmology Vetting quark-star models with gravitational waves in the hierarchical Bayesian framework Model independent approach for calculating galaxy rotation curves for low S/N MaNGA galaxies Teleparallel geometry with spherical symmetry: the diagonal and proper frames
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1