工程化多酶模拟二维双钌催化纳米触发器可实现级联酵素动力促进和协同 GPX4/FSP1 介导的铁氧化酶放大作用,从而实现癌症放射增敏

IF 13.3 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2024-11-19 DOI:10.1016/j.cej.2024.157762
Yipengchen Yin, Li Zhu, Tiaoyan Jiang, Rong Chai, Ya Zhang, Tianyu Li, Kai Wang, Sheng Wang, Qin Zhang
{"title":"工程化多酶模拟二维双钌催化纳米触发器可实现级联酵素动力促进和协同 GPX4/FSP1 介导的铁氧化酶放大作用,从而实现癌症放射增敏","authors":"Yipengchen Yin, Li Zhu, Tiaoyan Jiang, Rong Chai, Ya Zhang, Tianyu Li, Kai Wang, Sheng Wang, Qin Zhang","doi":"10.1016/j.cej.2024.157762","DOIUrl":null,"url":null,"abstract":"Radiotherapy (RT) is a critical clinical treatment for cancer. However, radioresistance often hampers its effectiveness, leading to local recurrence and therapeutic failure. Ferroptosis has been regarded as a natural barrier to tumor progression and plays a significant role in RT-mediated anticancer effects. Therefore, the simultaneous activation of ferroptosis and RT is of great significance for cancer therapy. Herein, we engineered the tumor-releasing nanozymes (BMBs), combining manganese oxide as the ferroptosis inducer and two-dimensional bismuthene with high-Z effect for augmented ferroptotic RT in a triple-enzyme-like radiosensitization manner. The nanozymes BMBs depleted glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) in the tumor microenvironment to exhibit glutathione peroxidase (GPX)-like activity and NADPH dehydrogenase (NDH)-like activity, accompanied by aberrant reactive oxygen species (ROS) production exhibiting peoxidase (POD)-like activity. In addition, the nanozymes BMBs simultaneously inactivate ferroptosis defensive system: glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) to induce ferroptosis. The strong oxidative stress induced cascade enzyodynamic effect and ferroptosis, which synergized with the two-dimensional bismuthene-mediated radiosensitization to improve the efficacy of RT. Both <em>in vitro</em> and <em>in vivo</em> experiments substantiated the excellent radiotherapeutic response of the nanozymes by enhancing RT and ferroptosis. Therefore, this work demonstrates that the rational combination of nanozymes with POD/GPX/NDH-like activity and GPX4/FSP1 suppressing ability to induce ferroptosis for synergistic radiosensitization provides a viable and promising strategy for cancer treatment.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"99 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineered multienzyme-mimicking 2D bismuthene catalytic nanotriggers enable cascade enzyodynamic-boosted and synergistic GPX4/FSP1-mediated ferroptosis amplification for cancer radiosensitization\",\"authors\":\"Yipengchen Yin, Li Zhu, Tiaoyan Jiang, Rong Chai, Ya Zhang, Tianyu Li, Kai Wang, Sheng Wang, Qin Zhang\",\"doi\":\"10.1016/j.cej.2024.157762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Radiotherapy (RT) is a critical clinical treatment for cancer. However, radioresistance often hampers its effectiveness, leading to local recurrence and therapeutic failure. Ferroptosis has been regarded as a natural barrier to tumor progression and plays a significant role in RT-mediated anticancer effects. Therefore, the simultaneous activation of ferroptosis and RT is of great significance for cancer therapy. Herein, we engineered the tumor-releasing nanozymes (BMBs), combining manganese oxide as the ferroptosis inducer and two-dimensional bismuthene with high-Z effect for augmented ferroptotic RT in a triple-enzyme-like radiosensitization manner. The nanozymes BMBs depleted glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) in the tumor microenvironment to exhibit glutathione peroxidase (GPX)-like activity and NADPH dehydrogenase (NDH)-like activity, accompanied by aberrant reactive oxygen species (ROS) production exhibiting peoxidase (POD)-like activity. In addition, the nanozymes BMBs simultaneously inactivate ferroptosis defensive system: glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) to induce ferroptosis. The strong oxidative stress induced cascade enzyodynamic effect and ferroptosis, which synergized with the two-dimensional bismuthene-mediated radiosensitization to improve the efficacy of RT. Both <em>in vitro</em> and <em>in vivo</em> experiments substantiated the excellent radiotherapeutic response of the nanozymes by enhancing RT and ferroptosis. Therefore, this work demonstrates that the rational combination of nanozymes with POD/GPX/NDH-like activity and GPX4/FSP1 suppressing ability to induce ferroptosis for synergistic radiosensitization provides a viable and promising strategy for cancer treatment.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":13.3000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2024.157762\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.157762","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

放疗(RT)是治疗癌症的重要临床手段。然而,放射抗药性往往会阻碍其疗效,导致局部复发和治疗失败。铁突变被认为是肿瘤进展的天然屏障,在 RT 介导的抗癌效应中发挥着重要作用。因此,同时激活铁突变和 RT 对癌症治疗具有重要意义。在此,我们设计了肿瘤释放纳米酶(BMBs),将氧化锰作为铁突变诱导剂与具有高Z效应的二维双钌相结合,以三酶样放射增敏方式增强铁突变RT。纳米酶 BMBs 消耗了肿瘤微环境中的谷胱甘肽(GSH)和烟酰胺腺嘌呤二核苷酸磷酸酯(NADPH),表现出类似谷胱甘肽过氧化物酶(GPX)的活性和类似 NADPH 脱氢酶(NDH)的活性,并伴随着异常活性氧(ROS)生成,表现出类似 peoxidase(POD)的活性。此外,纳米酶 BMBs 还同时使谷胱甘肽过氧化物酶 4 (GPX4) 和铁氧化抑制蛋白 1 (FSP1) 这两个铁氧化防御系统失活,从而诱导铁氧化。强氧化应激诱导了级联酶动力效应和铁突变,与二维双钌介导的放射增敏协同作用,提高了 RT 的疗效。体外和体内实验都证实了纳米酶通过增强 RT 和铁跃迁而产生的良好放射治疗反应。因此,这项工作表明,将具有 POD/GPX/NDH 类活性和 GPX4/FSP1 抑制能力的纳米酶合理地结合在一起,诱导铁变态反应,从而实现协同放射增敏,为癌症治疗提供了一种可行且前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineered multienzyme-mimicking 2D bismuthene catalytic nanotriggers enable cascade enzyodynamic-boosted and synergistic GPX4/FSP1-mediated ferroptosis amplification for cancer radiosensitization
Radiotherapy (RT) is a critical clinical treatment for cancer. However, radioresistance often hampers its effectiveness, leading to local recurrence and therapeutic failure. Ferroptosis has been regarded as a natural barrier to tumor progression and plays a significant role in RT-mediated anticancer effects. Therefore, the simultaneous activation of ferroptosis and RT is of great significance for cancer therapy. Herein, we engineered the tumor-releasing nanozymes (BMBs), combining manganese oxide as the ferroptosis inducer and two-dimensional bismuthene with high-Z effect for augmented ferroptotic RT in a triple-enzyme-like radiosensitization manner. The nanozymes BMBs depleted glutathione (GSH) and nicotinamide adenine dinucleotide phosphate (NADPH) in the tumor microenvironment to exhibit glutathione peroxidase (GPX)-like activity and NADPH dehydrogenase (NDH)-like activity, accompanied by aberrant reactive oxygen species (ROS) production exhibiting peoxidase (POD)-like activity. In addition, the nanozymes BMBs simultaneously inactivate ferroptosis defensive system: glutathione peroxidase 4 (GPX4) and ferroptosis suppressor protein 1 (FSP1) to induce ferroptosis. The strong oxidative stress induced cascade enzyodynamic effect and ferroptosis, which synergized with the two-dimensional bismuthene-mediated radiosensitization to improve the efficacy of RT. Both in vitro and in vivo experiments substantiated the excellent radiotherapeutic response of the nanozymes by enhancing RT and ferroptosis. Therefore, this work demonstrates that the rational combination of nanozymes with POD/GPX/NDH-like activity and GPX4/FSP1 suppressing ability to induce ferroptosis for synergistic radiosensitization provides a viable and promising strategy for cancer treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
Corrigendum to “Engineering prodrug nanoparticles for targeted therapy in heterogeneous glioblastoma” [Chem. Eng. J. 474 (2023) 145557] Regulating interlayer charge transfer in MoS2 via in-situ loading of Pd-metallene to enhance piezo-catalytic degradation efficiency: Contributions of low free energy Compromise boosted high capacitive energy storage in lead-free (Bi0.5Na0.5)TiO3 −based relaxor ferroelectrics by phase structure modulation and defect engineering Wide-temperature zinc-iodine batteries enabling by a Zn-ion conducting covalent organic framework buffer layer Binding energy crossover mechanism enables low-temperature hydrogen storage performance of dual-phase TiZrCrMnNi(VFe) high-entropy alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1