优化处理高温地区高浓度生活中水的渗滤工艺:响应面方法

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-11-19 DOI:10.1016/j.watres.2024.122803
Sidesse S.Y. Saapi, Harinaivo A. Andrianisa, Malicki Zorom, Lawani A. Mounirou, Swaib Semiyaga, Noel Tindouré
{"title":"优化处理高温地区高浓度生活中水的渗滤工艺:响应面方法","authors":"Sidesse S.Y. Saapi, Harinaivo A. Andrianisa, Malicki Zorom, Lawani A. Mounirou, Swaib Semiyaga, Noel Tindouré","doi":"10.1016/j.watres.2024.122803","DOIUrl":null,"url":null,"abstract":"Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and <em>Eudrilus Eugenia</em> as worm species. Experiences were conducted at room temperatures (26 - 31°C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51% for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m<sup>3</sup>. Earthworm's growth was satisfactory (17 - 52.5%) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"18 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a Vermifiltration process for the treatment of high strength domestic greywater in hot climate area: A Response Surface Methodology approach\",\"authors\":\"Sidesse S.Y. Saapi, Harinaivo A. Andrianisa, Malicki Zorom, Lawani A. Mounirou, Swaib Semiyaga, Noel Tindouré\",\"doi\":\"10.1016/j.watres.2024.122803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and <em>Eudrilus Eugenia</em> as worm species. Experiences were conducted at room temperatures (26 - 31°C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51% for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m<sup>3</sup>. Earthworm's growth was satisfactory (17 - 52.5%) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2024.122803\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122803","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

排放未经处理或部分处理的灰水会传播疾病给人类,并消耗水中的溶解氧,危及水生生物。目前的中水处理方法通常需要高额资本投入、大面积占地面积和大量能源,而蚯蚓过滤是一种生态安全、经济高效的技术,可有效减少废水中的高浓度有机物。本研究的重点是利用响应面方法对蚯蚓过滤系统的 COD 去除率进行建模和优化。蚯蚓过滤器由锯末、沙子和砾石作为过滤介质,Eudrilus Eugenia 作为蠕虫种类。实验在室温(26 - 31°C)下进行。影响 COD 去除的关键因素包括水力负荷率(HLR)、初始 COD 和蚯蚓密度(EWD)。这三个因素都对化学需氧量的去除产生了重大影响,并有明显的交叉效应。根据模型预测,当进水 COD 为 1087 毫克/升、蚯蚓数量为 178 条、HLR 为 133 升/平方米/天时,COD 去除率最高可达 91.51%,COD 剩余值为 92.29 毫克/升,符合世界卫生组织排放准则的要求。然而,由于该地区的家庭灰水水质变化很大,该系统的全面设计值为 2500 毫克/升,根据模型,对应于 123 升/平方米/天的 HLR。因此,处理水的生命周期成本(LCC)为 0.083 美元/立方米。在大多数过滤器中,蚯蚓的生长情况令人满意(17 - 52.5%)。最后,研究结果表明,该模型可用于设计实地规模的蚯蚓过滤系统,且变化最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of a Vermifiltration process for the treatment of high strength domestic greywater in hot climate area: A Response Surface Methodology approach
Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and Eudrilus Eugenia as worm species. Experiences were conducted at room temperatures (26 - 31°C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51% for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m3. Earthworm's growth was satisfactory (17 - 52.5%) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Molecular ecological insights into the synergistic response mechanism of nitrogen transformation, electron flow and antibiotic resistance genes in aerobic activated sludge systems driven by sulfamethoxazole and/or trimethoprim stresses Uncertainty analysis method for diagnosing multi-point defects in urban drainage systems Regulation mechanism of optimal bubble diameter for ozone wastewater treatment Expanding the pH range of Fenton-like reactions for pollutant degradation: The impact of acidic microenvironments A Novel Framework for Optimization and Evaluation of Sensors Network in Urban Drainage System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1