Sidesse S.Y. Saapi, Harinaivo A. Andrianisa, Malicki Zorom, Lawani A. Mounirou, Swaib Semiyaga, Noel Tindouré
{"title":"优化处理高温地区高浓度生活中水的渗滤工艺:响应面方法","authors":"Sidesse S.Y. Saapi, Harinaivo A. Andrianisa, Malicki Zorom, Lawani A. Mounirou, Swaib Semiyaga, Noel Tindouré","doi":"10.1016/j.watres.2024.122803","DOIUrl":null,"url":null,"abstract":"Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and <em>Eudrilus Eugenia</em> as worm species. Experiences were conducted at room temperatures (26 - 31°C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51% for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m<sup>3</sup>. Earthworm's growth was satisfactory (17 - 52.5%) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"18 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of a Vermifiltration process for the treatment of high strength domestic greywater in hot climate area: A Response Surface Methodology approach\",\"authors\":\"Sidesse S.Y. Saapi, Harinaivo A. Andrianisa, Malicki Zorom, Lawani A. Mounirou, Swaib Semiyaga, Noel Tindouré\",\"doi\":\"10.1016/j.watres.2024.122803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and <em>Eudrilus Eugenia</em> as worm species. Experiences were conducted at room temperatures (26 - 31°C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51% for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m<sup>3</sup>. Earthworm's growth was satisfactory (17 - 52.5%) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.\",\"PeriodicalId\":443,\"journal\":{\"name\":\"Water Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1016/j.watres.2024.122803\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122803","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Optimization of a Vermifiltration process for the treatment of high strength domestic greywater in hot climate area: A Response Surface Methodology approach
Discharging untreated or partially treated greywater spreads diseases to humans and depletes dissolved oxygen in water, endangering aquatic life. Current greywater treatment methods often require high capital investment, large floor space, and significant energy, whereas vermifiltration is an ecologically safe, cost-effective technology that efficiently reduces high levels of organic matter in wastewater. The present study focuses on the modeling and optimization of COD removal of a vermifiltration system, using Response Surface Methodology. The vermifilter consists of sawdust, sand, and gravel as filter media, and Eudrilus Eugenia as worm species. Experiences were conducted at room temperatures (26 - 31°C). Key factors considered as influencing COD removal were hydraulic loading rate (HLR), initial COD, and earthworm density (EWD). All three factors significantly impacted COD removal, with notable cross effects. The model predicted a maximum COD removal of 91.51% for influent with 1087 mg/L COD, 178 earthworms, and 133 L/m²/day HLR, achieving a residual COD value of 92.29 mg/L, that meet the requirements for the WHO discharge guidelines. However, due to high variability of household greywater quality in the area, the system has been full-scale designed for the value of 2500 mg/L which corresponds according to the model, to 123L/m²/day HLR. The life cycle cost (LCC) of the treated water is therefore 0.083USdollars /m3. Earthworm's growth was satisfactory (17 - 52.5%) in most filters. Finally, results suggest that the model can be used to design field-scale vermifiltration systems with minimal variation.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.