Qiang He;Guobiao Zhang;Jiawei Wang;Ruikun Luo;Xiaohai Dai;Yuchong Hu;Feifei Chen;Hai Jin;Yun Yang
{"title":"EdgeHydra:基于消除编码的容错边缘数据分发","authors":"Qiang He;Guobiao Zhang;Jiawei Wang;Ruikun Luo;Xiaohai Dai;Yuchong Hu;Feifei Chen;Hai Jin;Yun Yang","doi":"10.1109/TPDS.2024.3493034","DOIUrl":null,"url":null,"abstract":"In the edge computing environment, app vendors can distribute popular data from the cloud to edge servers to provide low-latency data retrieval. A key problem is how to distribute these data from the cloud to edge servers cost-effectively. Under current schemes, a file is divided into some data blocks for parallel transmissions from the cloud to target edge servers. Edge servers can then combine received data blocks to reconstruct the file. While this method expedites the data distribution process, it presents potential drawbacks. It is sensitive to transmission delays and transmission failures caused by runtime exceptions like network fluctuations and server failures. This paper presents EdgeHydra, the first edge data distribution scheme that tackles this challenge through fault tolerance based on erasure coding. Under EdgeHydra, a file is encoded into data blocks and parity blocks for parallel transmission from the cloud to target edge servers. An edge server can reconstruct the file upon the receipt of a sufficient number of these blocks without having to wait for all the blocks in transmission. It also innovatively employs a leaderless block supplement mechanism to ensure the receipt of sufficient blocks for individual target edge servers. These improve the robustness of the data distribution process significantly. Extensive experiments show that EdgeHydra can tolerate delays and failures in individual transmission links effectively, outperforming the state-of-the-art scheme by up to 50.54% in distribution time.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"36 1","pages":"29-42"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746622","citationCount":"0","resultStr":"{\"title\":\"EdgeHydra: Fault-Tolerant Edge Data Distribution Based on Erasure Coding\",\"authors\":\"Qiang He;Guobiao Zhang;Jiawei Wang;Ruikun Luo;Xiaohai Dai;Yuchong Hu;Feifei Chen;Hai Jin;Yun Yang\",\"doi\":\"10.1109/TPDS.2024.3493034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the edge computing environment, app vendors can distribute popular data from the cloud to edge servers to provide low-latency data retrieval. A key problem is how to distribute these data from the cloud to edge servers cost-effectively. Under current schemes, a file is divided into some data blocks for parallel transmissions from the cloud to target edge servers. Edge servers can then combine received data blocks to reconstruct the file. While this method expedites the data distribution process, it presents potential drawbacks. It is sensitive to transmission delays and transmission failures caused by runtime exceptions like network fluctuations and server failures. This paper presents EdgeHydra, the first edge data distribution scheme that tackles this challenge through fault tolerance based on erasure coding. Under EdgeHydra, a file is encoded into data blocks and parity blocks for parallel transmission from the cloud to target edge servers. An edge server can reconstruct the file upon the receipt of a sufficient number of these blocks without having to wait for all the blocks in transmission. It also innovatively employs a leaderless block supplement mechanism to ensure the receipt of sufficient blocks for individual target edge servers. These improve the robustness of the data distribution process significantly. Extensive experiments show that EdgeHydra can tolerate delays and failures in individual transmission links effectively, outperforming the state-of-the-art scheme by up to 50.54% in distribution time.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"36 1\",\"pages\":\"29-42\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10746622\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10746622/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10746622/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
EdgeHydra: Fault-Tolerant Edge Data Distribution Based on Erasure Coding
In the edge computing environment, app vendors can distribute popular data from the cloud to edge servers to provide low-latency data retrieval. A key problem is how to distribute these data from the cloud to edge servers cost-effectively. Under current schemes, a file is divided into some data blocks for parallel transmissions from the cloud to target edge servers. Edge servers can then combine received data blocks to reconstruct the file. While this method expedites the data distribution process, it presents potential drawbacks. It is sensitive to transmission delays and transmission failures caused by runtime exceptions like network fluctuations and server failures. This paper presents EdgeHydra, the first edge data distribution scheme that tackles this challenge through fault tolerance based on erasure coding. Under EdgeHydra, a file is encoded into data blocks and parity blocks for parallel transmission from the cloud to target edge servers. An edge server can reconstruct the file upon the receipt of a sufficient number of these blocks without having to wait for all the blocks in transmission. It also innovatively employs a leaderless block supplement mechanism to ensure the receipt of sufficient blocks for individual target edge servers. These improve the robustness of the data distribution process significantly. Extensive experiments show that EdgeHydra can tolerate delays and failures in individual transmission links effectively, outperforming the state-of-the-art scheme by up to 50.54% in distribution time.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.