电粘合垫设计可增强爬行微型机器人在不同地形上的附着力

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-11 DOI:10.1109/LRA.2024.3495574
Jennifer A. Shum;Perrin E. Schiebel;Alyssa M. Hernandez;Robert J. Wood
{"title":"电粘合垫设计可增强爬行微型机器人在不同地形上的附着力","authors":"Jennifer A. Shum;Perrin E. Schiebel;Alyssa M. Hernandez;Robert J. Wood","doi":"10.1109/LRA.2024.3495574","DOIUrl":null,"url":null,"abstract":"While previous studies have explored electroadhesive climbing using the insect-scale Harvard Ambulatory Microrobot platform, the robot's ability to climb reliably over irregular terrain has remained limited. To evaluate potential solutions, we conducted an investigation of the electroadhesive pad design space and characterized the shear force climbing capabilities of the robot with different pad designs. We find that on smooth, flat terrains, a large simple circular footpad structure exhibited the greatest shear forces. However, on rougher inclined surfaces, pads which adjusted the width, length, and number of spoke-like features provide greater compliance and achieve more consistent shear adhesion forces. Such compliant spoke pad designs on rough surfaces performed with 84 % stick reliability and 1.02 kPa average adhesion forces compared to 45 % stick reliability and 0.81 kPa average adhesion forces for a comparable circular pad. We demonstrate the improved climbing capability of the 4.5 cm robot on terrain with 75 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nm roughness and observe an average increase in climbing speed of 48 % over a range of angles from 0–45 degrees.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11569-11576"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electroadhesive Pad Design for Increased Adhesion of Climbing Microrobots on Diverse Terrains\",\"authors\":\"Jennifer A. Shum;Perrin E. Schiebel;Alyssa M. Hernandez;Robert J. Wood\",\"doi\":\"10.1109/LRA.2024.3495574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While previous studies have explored electroadhesive climbing using the insect-scale Harvard Ambulatory Microrobot platform, the robot's ability to climb reliably over irregular terrain has remained limited. To evaluate potential solutions, we conducted an investigation of the electroadhesive pad design space and characterized the shear force climbing capabilities of the robot with different pad designs. We find that on smooth, flat terrains, a large simple circular footpad structure exhibited the greatest shear forces. However, on rougher inclined surfaces, pads which adjusted the width, length, and number of spoke-like features provide greater compliance and achieve more consistent shear adhesion forces. Such compliant spoke pad designs on rough surfaces performed with 84 % stick reliability and 1.02 kPa average adhesion forces compared to 45 % stick reliability and 0.81 kPa average adhesion forces for a comparable circular pad. We demonstrate the improved climbing capability of the 4.5 cm robot on terrain with 75 \\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nm roughness and observe an average increase in climbing speed of 48 % over a range of angles from 0–45 degrees.\",\"PeriodicalId\":13241,\"journal\":{\"name\":\"IEEE Robotics and Automation Letters\",\"volume\":\"9 12\",\"pages\":\"11569-11576\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics and Automation Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10750275/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750275/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

虽然之前的研究已经利用昆虫级哈佛移动微型机器人平台探索了电粘性攀爬,但该机器人在不规则地形上可靠攀爬的能力仍然有限。为了评估潜在的解决方案,我们对电粘性垫的设计空间进行了调查,并对机器人在不同垫设计下的剪切力攀爬能力进行了鉴定。我们发现,在光滑平坦的地形上,大型简单圆形脚垫结构表现出最大的剪切力。然而,在较粗糙的倾斜表面上,调整宽度、长度和辐条状特征数量的脚垫具有更大的顺应性,并能获得更稳定的剪切附着力。在粗糙表面上,这种顺应性辐条衬垫设计的粘附可靠性为 84%,平均粘附力为 1.02 kPa,而同类圆形衬垫的粘附可靠性为 45%,平均粘附力为 0.81 kPa。我们展示了 4.5 厘米机器人在粗糙度为 75 $\mu$m 的地形上提高的攀爬能力,并观察到在 0-45 度的角度范围内,攀爬速度平均提高了 48%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electroadhesive Pad Design for Increased Adhesion of Climbing Microrobots on Diverse Terrains
While previous studies have explored electroadhesive climbing using the insect-scale Harvard Ambulatory Microrobot platform, the robot's ability to climb reliably over irregular terrain has remained limited. To evaluate potential solutions, we conducted an investigation of the electroadhesive pad design space and characterized the shear force climbing capabilities of the robot with different pad designs. We find that on smooth, flat terrains, a large simple circular footpad structure exhibited the greatest shear forces. However, on rougher inclined surfaces, pads which adjusted the width, length, and number of spoke-like features provide greater compliance and achieve more consistent shear adhesion forces. Such compliant spoke pad designs on rough surfaces performed with 84 % stick reliability and 1.02 kPa average adhesion forces compared to 45 % stick reliability and 0.81 kPa average adhesion forces for a comparable circular pad. We demonstrate the improved climbing capability of the 4.5 cm robot on terrain with 75 $\mu$ m roughness and observe an average increase in climbing speed of 48 % over a range of angles from 0–45 degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator With Multi-Epoch Outlier Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1