{"title":"离子在水力发电中的作用†。","authors":"George Kay and Kevin Stamplecoskie","doi":"10.1039/D4SE01132E","DOIUrl":null,"url":null,"abstract":"<p >Hydrovoltaic devices generate power from the transfer of ambient thermal energy involved in water evaporation. To date, hydrovoltaic research has focused mainly on identifying and optimizing materials for use in high-performing devices. While progress has been made towards the real-world application of hydrovoltaic devices, questions remain regarding the specific mechanism of power generation and the overall role of ions. Herein, we demonstrate that ions play an integral role in the functioning of graphite-based hydrovoltaic devices, and the presence of ions is essential for hydrovoltaic power generation in devices with both connected and disconnected electrodes. Probing the performance of devices in a variety of protic, aprotic, and organic solvents, we show that hydrovoltaic devices cease generating power in non-ionic liquids but can be ‘activated’ through the introduction of ionic salts. Recognizing the key role played by ions in hydrovoltaic devices provides further insight into the mechanism of power generation and can help guide the development of devices in the future.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 23","pages":" 5545-5552"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of ions in hydrovoltaic power generation†\",\"authors\":\"George Kay and Kevin Stamplecoskie\",\"doi\":\"10.1039/D4SE01132E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrovoltaic devices generate power from the transfer of ambient thermal energy involved in water evaporation. To date, hydrovoltaic research has focused mainly on identifying and optimizing materials for use in high-performing devices. While progress has been made towards the real-world application of hydrovoltaic devices, questions remain regarding the specific mechanism of power generation and the overall role of ions. Herein, we demonstrate that ions play an integral role in the functioning of graphite-based hydrovoltaic devices, and the presence of ions is essential for hydrovoltaic power generation in devices with both connected and disconnected electrodes. Probing the performance of devices in a variety of protic, aprotic, and organic solvents, we show that hydrovoltaic devices cease generating power in non-ionic liquids but can be ‘activated’ through the introduction of ionic salts. Recognizing the key role played by ions in hydrovoltaic devices provides further insight into the mechanism of power generation and can help guide the development of devices in the future.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 23\",\"pages\":\" 5545-5552\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01132e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/se/d4se01132e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The role of ions in hydrovoltaic power generation†
Hydrovoltaic devices generate power from the transfer of ambient thermal energy involved in water evaporation. To date, hydrovoltaic research has focused mainly on identifying and optimizing materials for use in high-performing devices. While progress has been made towards the real-world application of hydrovoltaic devices, questions remain regarding the specific mechanism of power generation and the overall role of ions. Herein, we demonstrate that ions play an integral role in the functioning of graphite-based hydrovoltaic devices, and the presence of ions is essential for hydrovoltaic power generation in devices with both connected and disconnected electrodes. Probing the performance of devices in a variety of protic, aprotic, and organic solvents, we show that hydrovoltaic devices cease generating power in non-ionic liquids but can be ‘activated’ through the introduction of ionic salts. Recognizing the key role played by ions in hydrovoltaic devices provides further insight into the mechanism of power generation and can help guide the development of devices in the future.
期刊介绍:
Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.